Math, asked by sravanisingampalli, 5 months ago

Solve dy/dx=xy+y/xy+x​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{dy}{dx}  =  \frac{xy + y}{xy + x}  \\

 \implies(xy + x)dy = (xy + y)dx \\

 \implies \: x(y + 1)dy = y(x + 1)dx \\

 \implies \frac{(y + 1)}{y} dy =  \frac{(x + 1)}{x} dx \\

Integrating both sides ,

 \implies \int( 1 + \frac{1}{y} )dy =  \int(1 +  \frac{1}{x } )dx \\

 \implies \: y +  ln(y)  = x +  ln(x)  + c \\

 \implies(y - x) +  ln( \frac{y}{x} )  = c \\

Similar questions