Solve dy/dx - y tan x = 3e ^-sin x
Answers
Answer:
Step-by-step explanation:
dy/dx= y tanx +e^x
dy/dx- y tanx =e^x
P=-tanx → z=e^ ∫-( tanx) dx = e^∫ -tanx dx =e^ lncosx = cosx
dy/dx- y tanx =e^x
z=ycosx → dz=(dy*cosx-ysinxdx)
dy/dx- y tanx =e^x
( cosx)dy/dx- y tanx *cosx=e^x*cosx
( cosx)dy/dx- y sinx=e^x*cosx
( cosx)dy- y sinx dx=e^x*cosx dx
dz=e^x*cosx dx
z=∫e^x*cosx dx
z= 1/2 e^x (sin(x) + cos(x)) + constant
∫e^x*cosx dx - Wolfram|Alpha
z= 1/2 e^x (sin(x) + cos(x)) + constant
ycosx=1/2 e^x (sin(x) + cos(x)) + constant
y =1/2 e^x (tan(x) + 1) + constant/(cosx)
y(x) = C* sec(x) + (e^x)/2 + (1/2) e^x tan(x)
The General equation of the question is y(x) = 1/2
Given:
dy/dx - y tan x = 3e ^-sin x which is in differential form
To Find:
The general equation of the following differential equation
Solution:
To calculate the integral factor ,
We should get the P and Q values,
P = tanx and Q = 3
Integral Factor (IF),
= e^∫tanxdx
= e^logsecx
IF = secx
To calculate the general solution,
We have,
y(IF) = ∫Q(IF)dx +c
ysecx = ∫3 e^-sinx(secx)dx +c
ysecx = cosx e^-sinx( + c
Upon cancelling the cos in numerator and denominator,
We get,
=
Hence we get the requires solution as
#SPJ2