Math, asked by saguptay309, 1 year ago

Solve dy÷dx+y÷x=y^2÷x^2

Answers

Answered by clockkeeper
0

put y=vx

so,

 \frac{dy}{dx}  = v + x \frac{dv}{dx}

therefore,

v + x \frac{dv}{dx}  + v =  {v}^{2}  \\  \frac{dv}{v.(v - 2 )}  =  \frac{dx}{x}  \\  \frac{1}{2} ( \frac{dv}{v - 2}  -  \frac{dv}{v} ) =  \frac{dx}{x }  \\ integrating \: both \: sides \: we \: get \\  log(v - 2)  -  log(v)  = 2 log(x)  +  log(c)  \\  log( \frac{v - 2}{v} )  =  log(c( {x}^{2}) )  \\  \\ taking \: antilog \: both \: sides \\  \frac{v - 2}{v}  = c {x}^{2}  \\ putting \: value \: of \: v \\  \frac{y - 2x}{y}  = c {x}^{2}

---------------That's all-------------------

Similar questions