Math, asked by gn7965468, 3 days ago

Solve dy/dx + ycotx = cosx​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm \: \dfrac{dy}{dx} + y \: cotx \: =  \: cosx \\

Its a linear differential equation, so on comparing with

\rm \: \dfrac{dy}{dx} + py  \: =  \: q, \: we \: get \\

\rm \: p \:  =  \: cotx \\

\rm \: q \:  =  \: cosx \\

Now, Integrating Factor is

\rm \: I.F. \:  = \:  {e}^{\displaystyle \int \rm pdx}  \\

\rm \: I.F. \:  = \:  {e}^{\displaystyle \int \rm cotx \: dx}  \\

\rm \: I.F. \:  = \:  {e}^{log \: sinx}  \\

\rm \: I.F. \:  = \:  sinx  \\

So, Solution of differential equation is given by

\rm \: y \times I.F. \:  =  \: \displaystyle \int \rm q \times I.F. \: dx \\

\rm \: y \times sinx \:  =  \: \displaystyle \int \rm cosx \times sinx \: dx \\

\rm \: y \: sinx \:  =  \: \displaystyle \int \rm sinx \: cosx \: dx \\

\rm \: y \: sinx \:  =  \:  \dfrac{1}{2} \displaystyle \int \rm  \: 2 \: sinx \: cosx \: dx \\

\rm \: y \: sinx \:  =  \:  \dfrac{1}{2} \displaystyle \int \rm  \:  sin2x  \: dx \\

\rm \: y \: sinx \:  =  \:  -  \dfrac{1}{2}  \times \dfrac{cos2x}{2}  + c \\

\rm \: y \: sinx \:  =  \:  -  \dfrac{cos2x}{4}  + c \\

\rm \: 4y \: sinx \:  =  \:  -  cos2x  + 4c \\

\rm \: 4y \: sinx \:  =  \:  -  cos2x  + c' \:  \:   \:  \:  \: \{where \: c' \:  =  \: 4c \} \\

Hence,

\color{green}\rm\implies \:\boxed{ \rm{4ysinx= -cos2x  + c' \:   \: \{where \: c' \:  =  \: 4c \} }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by AnanyaBaalveer
0

Answer:

4ysinx=-cos2x+4c

Step-by-step explanation:

HOPE HELPFUL THANK YOU

Similar questions