solve each of the following equation 3(x-1)=23-5(x+2)
Answers
Answered by
1
Step-by-step explanation:
3(x-1)=23-5(x+2)
=
x=2
Answered by
1
3(x-1)=23-5(x+2)
We move all terms to the left:
3(x-1)-(23-5(x+2))=0
We multiply parentheses
3x-(23-5(x+2))-3=0
We calculate terms in parentheses: -(23-5(x+2)), so:
23-5(x+2)
determiningTheFunctionDomain
-5(x+2)+23
We multiply parentheses
-5x-10+23
We add all the numbers together, and all the variables
-5x+13
Back to the equation:
-(-5x+13)
We get rid of parentheses
3x+5x-13-3=0
We add all the numbers together, and all the variables
8x-16=0
We move all terms containing x to the left, all other terms to the right
8x=16
x=16/8
We move all terms to the left:
3(x-1)-(23-5(x+2))=0
We multiply parentheses
3x-(23-5(x+2))-3=0
We calculate terms in parentheses: -(23-5(x+2)), so:
23-5(x+2)
determiningTheFunctionDomain
-5(x+2)+23
We multiply parentheses
-5x-10+23
We add all the numbers together, and all the variables
-5x+13
Back to the equation:
-(-5x+13)
We get rid of parentheses
3x+5x-13-3=0
We add all the numbers together, and all the variables
8x-16=0
We move all terms containing x to the left, all other terms to the right
8x=16
x=16/8
Similar questions