Math, asked by Ksnehareddy9895, 3 days ago

Solve each of the following equation and also verify your solution 5 X upon 3 + 2 upon 5 is equals to 1

Answers

Answered by varadad25
3

Answer:

The solution of the given equation is

\displaystyle{\boxed{\red{\sf\:x\:=\:\dfrac{9}{25}\:}}}

Step-by-step-explanation:

The given linear equation is

\displaystyle{\sf\:\dfrac{5x}{3}\:+\:\dfrac{2}{5}\:=\:1}

We have to find the value of x.

Now,

\displaystyle{\sf\:\dfrac{5x}{3}\:+\:\dfrac{2}{5}\:=\:1}

\displaystyle{\implies\sf\:\dfrac{5x\:\times\:5\:+\:2\:\times\:3}{3\:\times\:5}\:=\:1}

\displaystyle{\implies\sf\:\dfrac{25x\:+\:6}{15}\:=\:1}

\displaystyle{\implies\sf\:25x\:+\:6\:=\:1\:\times\:15}

\displaystyle{\implies\sf\:25x\:+\:6\:=\:15}

\displaystyle{\implies\sf\:25x\:=\:15\:-\:6}

\displaystyle{\implies\sf\:25x\:=\:9}

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:x\:=\:\dfrac{9}{25}\:}}}}

─────────────────────────

Verification:

The given equation is

\displaystyle{\sf\:\dfrac{5x}{3}\:+\:\dfrac{2}{5}\:=\:1}

We have,

\displaystyle{\sf\:x\:=\:\dfrac{9}{25}}

By substituting value of x in LHS of given equation, we get,

\displaystyle{\sf\:\dfrac{5x}{3}\:+\:\dfrac{2}{5}\:=\:1}

\displaystyle{\therefore\:\sf\:LHS\:=\:\dfrac{5x}{3}\:+\:\dfrac{2}{5}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\cancel{5}\:\times\:\dfrac{9}{\cancel{25}}}{3}\:+\:\dfrac{2}{5}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\dfrac{9}{5}}{3}\:+\:\dfrac{2}{5}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{9}{5}\:\times\:\dfrac{1}{3}\:+\:\dfrac{2}{5}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{9}{15}\:+\:\dfrac{2}{5}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{9}{15}\:+\:\dfrac{2}{5}\:\times\:\dfrac{3}{3}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{9}{15}\:+\:\dfrac{6}{15}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{9\:+\:6}{15}}

\displaystyle{\implies\sf\:LHS\:=\:\cancel{\dfrac{15}{15}}}

\displaystyle{\implies\sf\:LHS\:=\:1}

\displaystyle{\sf\:RHS\:=\:1}

\displaystyle{\therefore\:\boxed{\red{\sf\:LHS\:=\:RHS\:}}}

Hence verified!

Answered by kvalli8519
4

Given : Linear Equation is

 \rm \frac{5x}{3}  +  \frac{2}{5}  = 1

Solution :

\rm⇢ \: \:  \frac{5x}{3}  +  \frac{2}{5}  = 1

\rm⇢ \: \:  \frac{(5x)5 +  (2)3 }{3 \times 5}  = 1

\rm⇢ \: \:  \frac{25x + 6}{15}  = 1

\rm⇢ \: \: 25x + 6 = 15

\rm⇢ \: \: 25x = 15 - 6

\rm⇢ \: \: 25x = 9

\rm⇢ \: \: \boxed{ \orange{ \bf x =  \frac{9}{25} }}

FINAL ANSWER :

The Value of x is 9/25 .

Similar questions