Math, asked by manshisinha117946, 11 months ago

Solve each of the following equations by the
method of completing the square.
3x2 -5 X- 1 = 0​

Answers

Answered by BrainlyConqueror0901
24

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore x=\pm\frac{\sqrt{37}+5}{6}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline  \bold{Given : } \\  \implies x \in ( {3 x }^{2}  - 5x - 1 = 0) \\  \\  \underline  \bold{To \: Find: }  \\  \implies x  =  ?

• According to given question :

 \bold{Using \: method \: completing \: square : } \\  \implies  {3x}^{2}  - 5x - 1 = 0 \\  \\  \bold{Dividing \: whole \: equation \: by \: coefficient \: of \:  {x}^{2}  } \\  \implies  {x}^{2}  -  \frac{5x}{3}  -  \frac{1}{3}  = 0 \\  \\ \bold{Adding \: both \: side \: (\frac{b}{2a})^{2}  =  \frac{25}{36} }  \\    \implies  {x}^{2}  -  \frac{5x}{3} +  \frac{25}{36}   -  \frac{1}{3}  =  \frac{25}{36}  \\  \\ \implies   {x}^{2}  -  \frac{5x}{3}  +  \frac{25}{36}   =  \frac{25}{36}   +  \frac{1}{3}  \\  \\  \implies  ({x - \frac{5}{6}  })^{2}  =  \frac{25   +  12}{36}  \\  \\  \implies x -  \frac{5}{6}  =    \pm \sqrt{ \frac{37}{36} }\\  \\\bold{\implies x=\pm\frac{\sqrt{37}+5}{6}}

Answered by jatindevrajput
5

   \implies  {3x}^{2}  - 5x - 1 = 0 \\  \\  \bold{dividing \: whole \: equation \: by \: coefficient \: of \:  {x}^{2}  } \\  \implies  {x}^{2}  -  \frac{5x}{3}  -  \frac{1}{3}  = 0 \\  \\ \bold{adding \: both \: side \: (\frac{b}{2a})^{2}  =  \frac{25}{18} }  \\   \\ \implies  {x}^{2}  -  \frac{5x}{3} +  \frac{25}{18}   -  \frac{1}{3}  =  \frac{25}{18}  \\  \\ \implies   {x}^{2}  -  \frac{5x}{3}  +  \frac{25}{18}   =  \frac{25}{18}   +  \frac{1}{3}  \\  \\  \implies  ({x - \frac{5}{6}  })^{2}  =  \frac{25   +  6}{18}  \\  \\  \implies x -  \frac{5}{6}  =    \pm \sqrt{ \frac{31}{18} }  \\   \\   \bold{\implies x =    \pm \sqrt{ \frac{31}{18} }  +  \frac{5}{6} }

Similar questions