Math, asked by mahinderpalkaursidhu, 10 months ago

solve each of the following equations.
 \frac{1}{6} (1 - x) +  \frac{2}{3} x -  \frac{1}{4} (1 - 7x) =  \frac{13}{6}

Answers

Answered by Anonymous
2

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

 \frac{1}{6} (1 - x) + \frac{2}{3} x - \frac{1}{4} (1 - 7x) = \frac{13}{6}

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \sf \large{ \frac { 1 } { 6 } - \frac { x } { 6 } + \frac { 2x } { 3 } - \frac { 1 } { 4 } + \frac { 7x } { 4 } = \frac { 13 } { 6 }}

 \:\:

\underline{\bold{\texttt{Taking LCM = 12 }}}

 \:\:

 \sf \large{ \frac { 2} { 12} - \frac { 2x } { 12} + \frac { 8x } { 12} - \frac { 3 } { 12} + \frac { 21x } { 12 } = \frac { 13 } { 6 }}

 \:\:

 \sf \large{ \frac { 2 - 2x + 8x - 3 + 21x } { 12 } = \frac { 13 } { 6 }}

 \:\:

 \sf \large{ \frac { -1 + 27x } { 12 } = \frac { 13 } { 6 }}

 \:\:

 \underline{\bold{\texttt{Cross multiplying }}}

 \:\:

 \tt \large{ -6 + 162x = 156 }

 \:\:

 \sf \large{ 162x = 162 }

 \:\:

 \tt  \large{ \boxed{x = 1} }

 \:\:

Hence we got that the value of 'x' is 1

Similar questions