Solve each of the following pairs of equation by tha eliminations method
1. 8x+ 5y = 9
3x+2y = 4
Answers
Answer:
here's your detailed answer..
Step-by-step explanation:
x = -2 and y = 5
Step-by-step explanation:
Given Equations are,
8x + 5y = 9
8x + 5y - 9 = 0 ....................(1)
3x + 2y = 4
3x + 2y - 4 = 0 .......................(2)
here,
a_1=8\:,\:b_1=5\:,\:c_1=-9\:,\:a_2=3\:,\:b_2=2\:and\:c_2=-4a
1
=8,b
1
=5,c
1
=−9,a
2
=3,b
2
=2andc
2
=−4
since, \frac{a_1}{a_2}\neq\frac{a_2}{b_2}
a
2
a
1
=
b
2
a
2
There exist unique solution,
By cross multiplication method we get,
\frac{x}{5\times(-4)-2\times(-9)}=\frac{y}{-9\times3-(-4)\times8}=\frac{1}{8\times2-3\times5}
5×(−4)−2×(−9)
x
=
−9×3−(−4)×8
y
=
8×2−3×5
1
First Consider,
\frac{x}{5\times(-4)-2\times(-9)}=\frac{1}{8\times2-3\times5}
5×(−4)−2×(−9)
x
=
8×2−3×5
1
\frac{x}{-2}=\frac{1}{1}
−2
x
=
1
1
x=-2x=−2
Secondly consider,
\frac{y}{-9\times3-(-4)\times8}=\frac{1}{8\times2-3\times5}
−9×3−(−4)×8
y
=
8×2−3×5
1
\frac{y}{5}=\frac{1}{1}
5
y
=
1
1
y=5y=5
Therefore, x = -2 and y = 5