Math, asked by douda8427, 9 months ago

Solve each of the following systems of equations by the method of cross-multiplication:
(x/a) + (y/b) = a + b
(x/a²) + (y/b²) = 2

Answers

Answered by MaheswariS
3

\text{Given equations are}

\frac{x}{a}+\frac{y}{b}=a+b

\frac{x}{a^2}+\frac{y}{b^2}=2

\text{It can be written as}

\frac{x}{a}+\frac{y}{b}-(a+b)=0

\frac{x}{a^2}+\frac{y}{b^2}-2=0

\textbf{By multiplication rule}

\displaystyle\frac{x}{\frac{-2}{b}+\frac{a+b}{b^2}}=\frac{y}{\frac{-(a+b)}{a^2}+\frac{2}{a}}=\frac{1}{\frac{1}{ab^2}-\frac{1}{a^2b}}

\displaystyle\frac{x}{\frac{-2b+a+b}{b^2}}=\frac{y}{\frac{-a-b+2a}{a^2}}=\frac{1}{\frac{1}{ab}(\frac{1}{b}-\frac{1}{a}}

\displaystyle\frac{x}{\frac{a-b}{b^2}}=\frac{y}{\frac{a-b}{a^2}}=\frac{1}{\frac{1}{ab}(\frac{a-b}{ab})}

\implies\displaystyle\frac{x}{\frac{1}{b^2}}=\frac{y}{\frac{1}{a^2}}=\frac{1}{\frac{1}{ab}(\frac{1}{ab})}

\implies\displaystyle\frac{x}{\frac{1}{b^2}}=\frac{y}{\frac{1}{a^2}}=\frac{1}{\frac{1}{a^2b^2}}

\implies\displaystyle\;xb^2=ya^2=a^2b^2

\implies\displaystyle\;x=\frac{a^2b^2}{b^2},\;y=\frac{a^2b^2}{a^2}

\implies\displaystyle\;x=a^2,\;y=b^2

\therefore\textbf{The solution is }\;x=a^2,\;y=b^2

Find more:

SOLVE 2x+y=5 , 3x+2y=8 using cross multiplication method

https://brainly.in/question/5018449#

Similar questions