Math, asked by nainakumari4254319, 1 year ago

Solve equation and check the answer x+2/3=3x-2/5

Answers

Answered by BrainlyVirat
68
Here is the answer

 \tt {x + \frac{2}{3} = 3x - \frac{2}{5}}

 \bf { \frac{2}{3} = 3x - x - \frac{2}{5} }

 \bf{ \frac{2}{3} = 2x - \frac{2}{5} }

 \bf{ \frac{2}{3} + \frac{2}{5} = 2x }

Equal the Denominator

 \bf{\frac{2 \times 5}{3 \times 5} + \frac{2 \times 3}{5 \times 3} = 2x}

 \bf{\frac{10}{15} + \frac{6}{15} = 2x}
 \bf {\frac{16}{15} = 2x}

 \bf {\frac{ \frac{16}{15} }{2} = x}

 \bf{\frac{16}{15} \times {\frac{1}{2}} = x}

 \bf{\frac{8}{15} = x}

Thus , The value of x is 8/15.

Now,
Let's verify

Substituting the value of x in the given equation.

8 / 15 + 2 / 3 = 3( 8 / 15 ) - 2 / 5

( 8 + 10 ) / 15 = ( 24 - 6 ) / 15

18 / 15 = 18 / 15

Thus,

Left Hand Side = Right Hand Side

Hence,
we can conclude that,

x = 8 / 15
Answered by WritersParadise01
54
hey mate! here's your answer!

x + \frac{2}{3} = 3x - \frac{2}{5}

let us take the variable term one side and the fractional term other side, such that,

=> x - 3x = - \frac{2}{5} - \frac{2}{3}

take LCM of the terms on right hand side!

=> -2x = \frac{- 6 - 10}{15}

=> x = \frac{\cancel{-16}}{15} × \frac{1}{\cancel{-2}}

=> x = \frac{8}{15}

so, value of x is \frac{8}{15}.

VERIFICATION :-

Substitute the value of x in the equation!

=> \frac{8}{15} + \frac{2}{3} = \cancel{3} × \frac{8}{\cancel{15}} - \frac{2}{5}

take the LCM ,

=> \frac{8 + 10}{15} = \frac{8}{5} - \frac{2}{5}

=> \frac{18}{15} = \frac{8 - 2}{5}

=> \frac{6}{5} = \frac{6}{5}

THUS, R.H.S = L.H.S

\bf{hence, proved!}

prachi1712: hey why r u deleting my all answer
rahimkhan2: he
Similar questions