Solve equation root 3sin theta -cos theta =root 2
Answers
Answered by
48
Hi...☺
Here is your answer...✌
√3sinθ - cosθ = √2
Dividing both sides by 2 , We get
( √3sinθ - cosθ ) / 2 = √2/2
(√3/2) sinθ - (1/2) cosθ = 1/√2
cos30° sinθ - sin30° cosθ = sin45°
sin( θ - 30° ) = sin45 °
[ using identity ,
sin(A-B) = sinAcosB - cosAsinB ]
⇒ θ - 30° = 45°
⇒ θ = 45° + 30°
⇒ θ = 75°
Here is your answer...✌
√3sinθ - cosθ = √2
Dividing both sides by 2 , We get
( √3sinθ - cosθ ) / 2 = √2/2
(√3/2) sinθ - (1/2) cosθ = 1/√2
cos30° sinθ - sin30° cosθ = sin45°
sin( θ - 30° ) = sin45 °
[ using identity ,
sin(A-B) = sinAcosB - cosAsinB ]
⇒ θ - 30° = 45°
⇒ θ = 45° + 30°
⇒ θ = 75°
Answered by
2
Answer:
√3cosθ+sinθ=2
⇒23cosθ+21sinθ=21
⇒sin(3π)cosθ+cos(3π)sinθ=21
⇒sin(3π+θ)=21
⇒3π+θ=nπ+(−1)n4π⇒θ=nπ+(−1)n4π−3π
Similar questions