Math, asked by vive1126, 1 month ago

Solve equations by matrix method. X+y+z =6. 2x5y+5z=27. 2x+5y11z=45

Answers

Answered by prasannshenoy121
0

Answer:

Given system of equations

x−y+2z=7

3x+4y−5z=−5

2x−y+3z=12

This can be written as

AX=B

where A=

1

3

2

−1

4

−1

2

−5

3

,X=

x

y

z

,B=

7

−5

12

Here, ∣A∣=1(12−5)+1(9+10)+2(−3−8)

⇒∣A∣=7+19−22=4

Since, ∣A∣

=0

Hence, the system of equations is consistent and has a unique solution given by X==A

−1

B

A

−1

=

∣A∣

adjA

and adjA=C

T

C

11

=(−1)

1+1

4

−1

−5

3

⇒C

11

=12−5=7

C

12

=(−1)

1+2

3

2

−5

3

⇒C

12

=−(9+10)=−19

C

13

=(−1)

1+3

3

2

4

−1

⇒C

13

=−3−8=−11

C

21

=(−1)

2+1

−1

−1

2

3

⇒C

21

=−(−3+2)=1

C

22

=(−1)

2+2

1

2

2

3

⇒C

22

=3−4=−1

C

23

=(−1)

2+3

1

2

−1

−1

⇒C

23

=−(−1+2)=−1

C

31

=(−1)

3+1

−1

4

2

−5

⇒C

31

=5−8=−3

C

32

=(−1)

3+2

1

3

2

−5

⇒C

32

=−(−5−6)=11

C

33

=(−1)

3+3

1

3

−1

4

⇒C

33

=4+3=7

Hence, the co-factor matrix is C=

7

1

−3

−19

−1

11

−11

−1

7

⇒adjA=C

T

=

7

−19

−11

1

−1

−1

−3

11

7

⇒A

−1

=

∣A∣

adjA

=

4

1

7

−19

−11

1

−1

−1

−3

11

7

Solution is given by

x

y

z

=

4

1

7

−19

−11

1

−1

−1

−3

11

7

7

−5

12

x

y

z

=

4

1

49−−5−36

−133+5+132

−77+5+84

x

y

z

=

4

1

8

4

12

x

y

z

=

2

1

3

Hence, x=2,y=1,z=3

Similar questions