Math, asked by TheRiskyGuy, 9 months ago

Solve...
⚠f IoN l B l O o X w

Attachments:

Answers

Answered by SonalRamteke
3

Step-by-step explanation:

The value of a is \frac{15}{4}

4

15

and b is 9.

Step-by-step explanation:

Given : If f(x)=ax^2-bx+6f(x)=ax

2

−bx+6 and f(2)=3 and f(4)=30.

To find : The value of a and b ?

Solution :

f(x)=ax^2-bx+6f(x)=ax

2

−bx+6

Substitute x=2,

f(2)=a(2)^2-b(2)+6f(2)=a(2)

2

−b(2)+6

3=4a-2b+63=4a−2b+6

4a-2b=-34a−2b=−3 .....(1)

Substitute x=4,

f(4)=a(4)^2-b(4)+6f(4)=a(4)

2

−b(4)+6

30=16a-4b+630=16a−4b+6

16a-4b=2416a−4b=24

4a-b=64a−b=6 .....(2)

Subtract (1) and (2),

4a-b-(4a-2b)=6-(-3)4a−b−(4a−2b)=6−(−3)

b=9b=9

Substitute in (1),

4a-2(9)=-34a−2(9)=−3

4a-18=-34a−18=−3

4a=-3+184a=−3+18

4a=154a=15

a=\frac{15}{4}a=

4

15

Therefore, the value of a is \frac{15}{4}

4

15

and b is 9.

#Learn more

If f(x)=ax^2+bx+2 and f(1)=3, f(4)=42 then find a and b .

I hope I help you ♡

Answered by vshouryansh6
0

Answer:

bhai tum kya left ho gye kya

Similar questions