solve fast... . .................
Attachments:
Answers
Answered by
0
hey buddy....
As per the question,
64^{-1/3}(64^{1/3}-64^{2/3}64−1/3(641/3−642/3
As, 64 = 4^364=43
(4^3)^{-1/3}((4^3)^{1/3}- (4^3)^{2/3})(43)−1/3((43)1/3−(43)2/3)
\begin{lgathered}(4^3)^{-1/3}((4^3)^{1/3}- (4^3)^{2/3}) \\ \\ 4^{-1} (4^1 - 4^2) \\ \\ \frac{1}{4}(4-16) \\ \\ \frac{1}{4}(-12) \\ \\\end{lgathered}(43)−1/3((43)1/3−(43)2/3)4−1(41−42)41(4−16)41(−12)
-3
The answer is -3.
hope this helps....
please mark my answer as brainlist answer....
As per the question,
64^{-1/3}(64^{1/3}-64^{2/3}64−1/3(641/3−642/3
As, 64 = 4^364=43
(4^3)^{-1/3}((4^3)^{1/3}- (4^3)^{2/3})(43)−1/3((43)1/3−(43)2/3)
\begin{lgathered}(4^3)^{-1/3}((4^3)^{1/3}- (4^3)^{2/3}) \\ \\ 4^{-1} (4^1 - 4^2) \\ \\ \frac{1}{4}(4-16) \\ \\ \frac{1}{4}(-12) \\ \\\end{lgathered}(43)−1/3((43)1/3−(43)2/3)4−1(41−42)41(4−16)41(−12)
-3
The answer is -3.
hope this helps....
please mark my answer as brainlist answer....
Anonymous:
This is wrong.
Answered by
0
As per the question,
As,
[tex](4^3)^{-1/3}((4^3)^{1/3}- (4^3)^{2/3}) \\ \\ 4^{-1} (4^1 - 4^2) \\ \\ \frac{1}{4}(4-16) \\ \\ \frac{1}{4}(-12) \\ \\ [/tex]
-3
The answer is -3.
As,
[tex](4^3)^{-1/3}((4^3)^{1/3}- (4^3)^{2/3}) \\ \\ 4^{-1} (4^1 - 4^2) \\ \\ \frac{1}{4}(4-16) \\ \\ \frac{1}{4}(-12) \\ \\ [/tex]
-3
The answer is -3.
Similar questions
Hindi,
8 months ago
Math,
8 months ago
India Languages,
1 year ago
Math,
1 year ago
Science,
1 year ago