Math, asked by Rperween1977, 1 year ago

Solve fast hard questions
4k^2(4^-1+4k^-2)

Answers

Answered by Lilmezzi1115
1

Answer:

K2+16 Make me Brainlist answer please

Step-by-step explanation:

1): "^-2" was replaced by "^(-2)". 1 more similar replacement(s)

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 (4 • (k2)) • ((4-1) +  22k(-2))

Step  2  :

2.1     4 = 22

(4)-1 = (22)(-1) = (2)(-2)

Equation at the end of step  2  :

 (4 • (k2)) • ((2)(-2) +  22k(-2))

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  22  as the denominator :

              22k(-2)      22k(-2) • 22

   22k(-2) =  ———————  =  ————————————

                 1             22    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1 + 22k(-2) • 4      1 + 16k(-2)

———————————————  =  ———————————

       4                 4    

Equation at the end of step  3  :

              (1 + 16k(-2))

 (4 • (k2)) • —————————————

                    4      

Step  4  :

Equation at the end of step  4  :

        (1 + 16k(-2))

 22k2 • —————————————

              4      

Step  5  :

Step  6  :

Pulling out like terms :

6.1     Pull out like factors :

  1 + 16k(-2)  =   k(-2) • (k2 + 16)

Polynomial Roots Calculator :

6.2    Find roots (zeroes) of :       F(k) = k2 + 16

Polynomial Roots Calculator is a set of methods aimed at finding values of  k  for which   F(k)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  k  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  16.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,4 ,8 ,16

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        17.00    

     -2       1        -2.00        20.00    

     -4       1        -4.00        32.00    

     -8       1        -8.00        80.00    

     -16       1       -16.00        272.00    

     1       1        1.00        17.00    

     2       1        2.00        20.00    

     4       1        4.00        32.00    

     8       1        8.00        80.00    

     16       1        16.00        272.00    

Polynomial Roots Calculator found no rational roots

Multiplying exponential expressions :

6.3    k2 multiplied by k(-2) = k(2 + (-2)) = k0 = 1 Any number to the zero power is 1

Canceling Out :

6.4      Canceling out  22 as it appears on both sides of the fraction line

Final result :

 k2 + 16

Answered by 2008shrishti
1

Answer:

1): "^-2" was replaced by "^(-2)". 1 more similar replacement(s)

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 (4 • (k2)) • ((4-1) +  22k(-2))

Step  2  :

2.1     4 = 22

(4)-1 = (22)(-1) = (2)(-2)

Equation at the end of step  2  :

 (4 • (k2)) • ((2)(-2) +  22k(-2))

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  22  as the denominator :

              22k(-2)      22k(-2) • 22

   22k(-2) =  ———————  =  ————————————

                 1             22    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1 + 22k(-2) • 4      1 + 16k(-2)

———————————————  =  ———————————

       4                 4    

Equation at the end of step  3  :

              (1 + 16k(-2))

 (4 • (k2)) • —————————————

                    4      

Step  4  :

Equation at the end of step  4  :

        (1 + 16k(-2))

 22k2 • —————————————

              4      

Step  5  :

Step  6  :

Pulling out like terms :

6.1     Pull out like factors :

  1 + 16k(-2)  =   k(-2) • (k2 + 16)

Polynomial Roots Calculator :

6.2    Find roots (zeroes) of :       F(k) = k2 + 16

Polynomial Roots Calculator is a set of methods aimed at finding values of  k  for which   F(k)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  k  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  16.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,4 ,8 ,16

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        17.00    

     -2       1        -2.00        20.00    

     -4       1        -4.00        32.00    

     -8       1        -8.00        80.00    

     -16       1       -16.00        272.00    

     1       1        1.00        17.00    

     2       1        2.00        20.00    

     4       1        4.00        32.00    

     8       1        8.00        80.00    

     16       1        16.00        272.00    

Polynomial Roots Calculator found no rational roots

Multiplying exponential expressions :

6.3    k2 multiplied by k(-2) = k(2 + (-2)) = k0 = 1 Any number to the zero power is 1

Canceling Out :

6.4      Canceling out  22 as it appears on both sides of the fraction line

Final result :

 k2 + 16

Step-by-step explanation:

Hope this answer will help you.

Similar questions