Math, asked by antony70, 9 months ago

solve fast.........pls

Attachments:

amitnrw: 1 is the answer

Answers

Answered by Anonymous
8

Answer:

Given:

\sf{a+b+c=0}

Solution:

\sf{a+b+c=0}

\sf{\therefore{-c=a+b \ and \ c=-a-b}}

\sf{\leadsto{\dfrac{1}{x^{a}+x^{-b}+1}+\dfrac{1}{x^{b}+x^{-c}+1}+\dfrac{1}{x^{c}+x^{-a}+1}}}

\sf{Multiply \ first \ term \ by \ x^{b}}

\sf{\leadsto{\dfrac{x^{b}}{x^{a+b}+x^{b}+1}+\dfrac{1}{x^{b}+x^{-c}+1}+\dfrac{1}{x^{c}+x^{-a}+1}}}

\sf{In \ second \ term \ by \ substitute \ -c=a+b}

\sf{\leadsto{\dfrac{x^{b}}{x^{a+b}+x^{b}+1}+\dfrac{1}{x^{b}+x^{a+b}+1}+\dfrac{1}{x^{c}+x^{-a}+1}}}

\sf{\leadsto{\dfrac{x^{b}}{x^{a+b}+x^{b}+1}+\dfrac{1}{x^{a+b}+x^{b}+1}+\dfrac{1}{x^{c}+x^{-a}+1}}}

\sf{Substitute \ c=-a-b \ in \ third \ term}

\sf{\leadsto{\dfrac{x^{b}}{x^{a+b}+x^{b}+1}+\dfrac{1}{x^{a+b}+x^{b}+1}+\dfrac{1}{x^{-a-b}+x^{-a}+1}}}

\sf{Multiply \ third \ term \ by \ x^{a+b}}

\sf{\leadsto{\dfrac{x^{b}}{x^{a+b}+x^{b}+1}+\dfrac{1}{x^{a+b}+x^{b}+1}+\dfrac{x^{a+b}}{x^{0}+x^{b}+x^{a+b}}}}

\sf{\leadsto{\dfrac{x^{b}}{x^{a+b}+x^{b}+1}+\dfrac{1}{x^{a+b}+x^{b}+1}+\dfrac{x^{a+b}}{x^{a+b}+x^{b}+1}}}

\sf{\leadsto{\dfrac{x^{b}+1+x^{a+b}}{x^{a+b}+x^{b}+1}}}

\sf{\leadsto{1}}

\sf\purple{\tt{Hence, \ the \ answer \ is \ 1.}}

Answered by anchal9326
4

aapka naam...?...???

Similar questions