Math, asked by pal3242, 5 months ago

solve fastttt it ??!!!!???!! ​

Attachments:

Answers

Answered by BrainlyEmpire
161

Question :–

  \\  { \bold{show \:  \: that  \: :  \:  \lambda =  \frac{h}{ \sqrt{3mKT} } }} \\

ANSWER :–

• We know that –

 \\  \:  \:  \: { \huge{.}} \:  \:  { \bold{E =  \dfrac{hc}{ \lambda} }} \\

• And Einstein's formula –

 \\  \:  \:  \: { \huge{.}} \:  \:  { \bold{E =  m {c}^{2}  }} \\

• From both equation –

 \\    \implies  { \bold{\dfrac{hc}{ \lambda} =  m {c}^{2}  }} \\

 \\    \implies  { \bold{\dfrac{h}{ \lambda} =  m c  }} \\

 \\    \implies  { \bold{\dfrac{h}{ mc} =  \lambda  }} \\

 \\    \implies  { \bold{  \lambda =  \dfrac{h}{ p} \:  \:  \:  \:  \: \:  \:  \:  \:  \left[ \because \:  \: p = mc \right] \:  \:  \:  \:  }} \\

• We know that –

 \\    \implies  { \bold{kinetic \:  \: energy(E) =  \frac{1}{2} m {v}^{2}  }} \\

 \\    \implies  { \bold{E =  \dfrac{1}{2} \dfrac{ m {}^{2}  {v}^{2}}{m}  }} \\

• We should write this as –

 \\    \implies  { \bold{E =  \dfrac{1}{2} \dfrac{ {p}^{2}  }{m}  }} \\

 \\    \implies  { \bold{ p =  \sqrt{2mE}   }} \\

• So that –

 \\    \implies  { \bold{  \lambda =  \dfrac{h}{  \sqrt{2mE} }  }} \\

 \\    \implies  { \bold{  \lambda =  \dfrac{h}{  \sqrt{2m \left(\dfrac{3}{2}KT \right)} } \:  \:  \:  \:  \: \:  \:  \:  \:  \left[  \: \because \:  \:  E =  \dfrac{3}{2}KT \right] \:  \:  \:  \:}} \\

 \\    \implies  { \bold{  \lambda =  \dfrac{h}{  \sqrt{3m KT} } }} \\

 \\      { \bold{   \underline{ \underline{Used \:  \: symbols}}  : - }} \\

 \\      { \bold{\:  \: { \huge{.}}  \:  \lambda =wavelength}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  c =speed \: \:  of \:  \: light}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  h=Planck's  \:  \: constant}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  E=energy}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  m=mass \:  \: of \: \: partical}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  P=Linear \: \: momentum}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  K=Boltzman's \: \: constant}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  T=Temperature}} \\

Answered by Anonymous
20

Question :–

  \\  { \bold{show \:  \: that  \: :  \:  \lambda =  \frac{h}{ \sqrt{3mKT} } }} \\

ANSWER :–

• We know that –

 \\  \:  \:  \: { \huge{.}} \:  \:  { \bold{E =  \dfrac{hc}{ \lambda} }} \\

• And Einstein's formula –

 \\  \:  \:  \: { \huge{.}} \:  \:  { \bold{E =  m {c}^{2}  }} \\

• From both equation –

 \\    \implies  { \bold{\dfrac{hc}{ \lambda} =  m {c}^{2}  }} \\

 \\    \implies  { \bold{\dfrac{h}{ \lambda} =  m c  }} \\

 \\    \implies  { \bold{\dfrac{h}{ mc} =  \lambda  }} \\

 \\    \implies  { \bold{  \lambda =  \dfrac{h}{ p} \:  \:  \:  \:  \: \:  \:  \:  \:  \left[ \because \:  \: p = mc \right] \:  \:  \:  \:  }} \\

• We know that –

 \\    \implies  { \bold{kinetic \:  \: energy(E) =  \frac{1}{2} m {v}^{2}  }} \\

 \\    \implies  { \bold{E =  \dfrac{1}{2} \dfrac{ m {}^{2}  {v}^{2}}{m}  }} \\

• We should write this as –

 \\    \implies  { \bold{E =  \dfrac{1}{2} \dfrac{ {p}^{2}  }{m}  }} \\

 \\    \implies  { \bold{ p =  \sqrt{2mE}   }} \\

• So that –

 \\    \implies  { \bold{  \lambda =  \dfrac{h}{  \sqrt{2mE} }  }} \\

 \\    \implies  { \bold{  \lambda =  \dfrac{h}{  \sqrt{2m \left(\dfrac{3}{2}KT \right)} } \:  \:  \:  \:  \: \:  \:  \:  \:  \left[  \: \because \:  \:  E =  \dfrac{3}{2}KT \right] \:  \:  \:  \:}} \\

 \\    \implies  { \bold{  \lambda =  \dfrac{h}{  \sqrt{3m KT} } }} \\

 \\      { \bold{   \underline{ \underline{Used \:  \: symbols}}  : - }} \\

 \\      { \bold{\:  \: { \huge{.}}  \:  \lambda =wavelength}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  c =speed \: \:  of \:  \: light}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  h=Planck's  \:  \: constant}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  E=energy}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  m=mass \:  \: of \: \: partical}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  P=Linear \: \: momentum}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  K=Boltzman's \: \: constant}} \\

 \\ \:  \: { \huge{.}}      { \bold{ \:  \:  T=Temperature}} \\

Similar questions