CBSE BOARD XII, asked by nikhilnpk2gmailcom, 1 year ago

solve find dy/dx isko solve karo

Attachments:

Answers

Answered by sushant2505
19
Hi...☺

Here is your answer...✌

x =  \frac{1 +   \log t}{ {t}^{2} } \\  \\  \frac{dx}{dt}   =  \frac{ \frac{d}{dt}(1 +  \log t  )  \times  {t}^{2} -  \frac{d}{dt} ({t}^{2} )  \times (1 +   \log t) }{{ ({t}^{2}) }^{2}  }  \\  \\  =  \frac{ \frac{1}{t}  \times  {t}^{2} - 2t \times (1 +  \log t)}{ {t}^{4} }   \\  \\  =  \frac{t - 2t(1 +  \log t)}{ {t}^{4} }  \\  \\   =\frac{t(1  - 2 (1 + \log t))}{ {t}^{4} } \\  \\  =  \frac{(1  - 2 - 2  \log t)}{t} \\  \\  =  \frac{ - 1 - 2  \log t}{ {t}^{ 3} }  \\  \\  y =  \frac{3 +   2\log t}{t} \\  \\  \frac{dy}{dt}   =  \frac{ \frac{d}{dt}(3 +  2\log t  )  \times  {t} -  \frac{d}{dt} ({t} )  \times (3 +   2\log t) }{{t}^{2}}\\  \\  =  \frac{ \frac{2}{t}  \times t - 1(3 + 2\log t)}{ {t}^{2} } \\  \\    =  \frac{2 - 3  -  2\log t}{ {t}^{2} }  \\  \\  =  \frac{ - 1 - 2\log t}{ {t}^{2} }

Now,

 \frac{dy}{dx}   = \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} }   =  \frac{ \frac{ - 1 - 2  \log t}{ {t}^{2} } }{ \frac{- 1 - 2  \log t}{ {t}^{3} } }  \\  \\    \implies  \frac{dy}{dx}  = t
Answered by nibhagroup
0

Answer:  dy/dx=t

Explanation:

x= 1+logt/t²

dx/dt= 1/t ×t²-2t(1+logt)/(t²)²

        = t-2t(1+logt)/(t²)

        = 1-2-2㏒t/t³

        = -1-2log t / t³

y= 3+2logt /t

dy/dx= 2/t×t-1(3+2logt)/t

         = 2-3-2log t/ t²

         = -1-2logt/t²

dy/dx = -1-2log t /t² × t³/-1-2log t

         = t

Similar questions