Math, asked by believeheart016, 10 months ago

solve
Find the value of k?​

Attachments:

Answers

Answered by Anonymous
61

Question :

The equation x{}^{2}+kxy+y{}^{2}-5x-7y+6=0 represents a pair of staright lines,then k is :

Theory :

An equation of the form ax{}^{2}+2hxy+by{}^{2}+2gx+2fy+c=0

is called genral equation of second degree in x and y .

The necessary and sufficient condition to represent a pair of straight lines is:

Δ =\left|\begin{array}{ccc}a&h&g\\h&b&f\\g&f&c\end{array}\right|=0

abc+2fgh-af{}^{2}-bg{}^{2}-ch{}^{2}=0

Solution ;

Given : Curve equation= x{}^{2}+kxy+y{}^{2}-5x-7y+6=0

On camparing with Genral equation:

a=1 , b=1 ,h = k/2 , g =-5/2 ,f =-7/2 and c = 6

_________________________________

Now it's is given that curve represents a pair of staright lines .

Therefore ; Δ = 0

abc+2fgh-af{}^{2}-bg{}^{2}-ch{}^{2}=0

Now put the values :

 \implies6 + 2 \times\frac{ - 7}{2} \times  \frac{ - 5}{2} \times  \frac{k}{2}  - 1 \times  (\frac{ - 7}{2})  {}^{2}  - 1 \times ( \frac{ - 5}{2} ) { }^{2}  - 6 \times ( \frac{k}{2}) {}^{2}  = 0

 \implies6 +  \frac{35k}{4}  -  \frac{49}{4} -  \frac{29}{4}  -  \frac{6k {}^{2} }{4}  = 0

 \implies35k -  50 - 6k {}^{2}  = 0

 \implies6k {}^{2}  + 50 - 35k = 0

 \implies(2k - 5)(3k - 10) = 0

 \implies \: k =  \dfrac{5}{2}  \: or \: k =  \dfrac{10}{3}

Correct option b)

{\purple{\boxed{\large{\bold{k=\dfrac{10}{3}}}}}}

Similar questions