Math, asked by vartikapal01, 1 month ago

Solve first order DE
x(x-y)dy=y(x+y)dx

Answers

Answered by bpjaiswal1944
0

Answer:

∴ The homogeneous equation is log(\frac{y}{x} )+\frac{y}{x} =-2logx-2clog(

x

y

)+

x

y

=−2logx−2c

Step-by-step explanation:

Given;

x(x-y)dy=y(x+y)dxx(x−y)dy=y(x+y)dx

⇒\frac{dy}{dx} =\frac{y(x+y)}{x(x-y)}

dx

dy

=

x(x−y)

y(x+y)

___equation-1

Let, y=vxy=vx

differentiate with respect to xx ;

⇒\frac{dy}{dx}=v+x\frac{dv}{dx}

dx

dy

=v+x

dx

dv

Plug \frac{dy}{dx}

dx

dy

value in equation-1;

∴v+x\frac{dv}{dx}=\frac{vx(x+vx)}{x(x-vx)}v+x

dx

dv

=

x(x−vx)

vx(x+vx)

⇒v+x\frac{dv}{dx}=\frac{v(1+v)}{(1-v)}v+x

dx

dv

=

(1−v)

v(1+v)

⇒x\frac{dv}{dx}=\frac{(v+v^{2} )}{(1-v)}-vx

dx

dv

=

(1−v)

(v+v

2

)

−v

⇒x\frac{dv}{dx}=\frac{(v+v^{2} -v+v^{2} )}{(1-v)}x

dx

dv

=

(1−v)

(v+v

2

−v+v

2

)

⇒x\frac{dv}{dx}=\frac{2v^{2}}{(1-v)}x

dx

dv

=

(1−v)

2v

2

⇒\frac{1-v}{2v^{2} } dv=\frac{dx}{x}

2v

2

1−v

dv=

x

dx

Integrating on both sides;

\int \frac{1-v}{2v^{2} } dv=\int \frac{dx}{x}∫

2v

2

1−v

dv=∫

x

dx

By integrating of \int \frac{1-v}{2v^{2} } dv∫

2v

2

1−v

dv the value will be come -\frac{1}{2}log(v)-\frac{1}{2}v−

2

1

log(v)−

2

1

v

So,

-\frac{1}{2}log(v)-\frac{1}{2}v=logx+c−

2

1

log(v)−

2

1

v=logx+c where c=c= constant

⇒log(v)+v=-2logx-2clog(v)+v=−2logx−2c

∴log(\frac{y}{x} )+\frac{y}{x} =-2logx-2clog(

x

y

)+

x

y

=−2logx−2c (∵v=\frac{y}{x}v=

x

y

)

So the homogeneous equation is log(\frac{y}{x} )+\frac{y}{x} =-2logx-2clog(

x

y

)+

x

y

=−2logx−2c

Similar questions