Math, asked by lakshmish1001, 1 year ago

solve foe x : 1/abx = 1/a+ 1/b + 1/x

Answers

Answered by sandipkumar79
1

1 \div abx = 1 \div a + 1 \div b + 1 \div x \\ 1 \div abx = (bx + ax + ab) \div abx \\ 1 = bx + ax + ab \\ x(a + b) = 1 - ab \\ x = (1 - ab) \div (a + b)
Answered by Mankuthemonkey01
14
Given


 \frac{1}{abx}   =  \frac{1}{a }  +  \frac{1}{b}  +  \frac{1}{x}  \\

On the RHS, make the denominators same and add them.

 \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{x}  \\  \\  =  \frac{1}{a}  \times  \frac{b}{b}  +  \frac{1}{b}  \times  \frac{a}{a}  +  \frac{1}{x}  \\  \\  =  \frac{b}{ab}  +  \frac{a}{ab}  +  \frac{1}{x}  \\  \\  =  >  \frac{a + b}{ab}  +  \frac{1}{x}  \\  \\  =  >  \frac{(a + b)}{ab}  \times  \frac{x}{x}  +  \frac{1}{x}  \times  \frac{ab}{ab}  \\  \\  =  >  \frac{x(a + b) + ab}{abx}


So,

 \frac{1}{abx}  =  \frac{x(a + b) + ab}{abx}  \\  \\
cancel abx from both sides as it is the common denominator

 =  > 1 = x(a + b) + ab \\  \\  =  > x(a + b) = 1 - ab \\  \\  =  > x =  \frac{1 - ab}{a + b}

Hope it helps dear friend ☺️
Similar questions