Math, asked by bipashaneog1234, 10 months ago

solve followings by using formula
a) b³+8b²a+16ba²
b)2a³-2a²+1÷2a

Answers

Answered by RonakMangal
1

Answer:

Formula for a plus b Whole Square :

In this section, we are going to see the formula/expansion for (a + b)2.

That is,

(a + b)2 = (a + b)(a + b)

(a + b)2 = a2 + ab + ab + b2

(a + b)2 = a2 + 2ab + b2

Proving the Formula for a plus b Whole Square Geometrically

In this section, we are going to see, how to prove the expansion of (a + b)2 geometrically.

We can prove the the expansion of (a + b)2 using the area of a square as shown below.

Formula for a plus b Whole Square - Example Problems

Problem 1 :

Expand :

(x + y)2

Solution :

(x + y)2 is in the form of (a + b)2

Comparing (a + b)2 and (x + y)2, we get

a = x

b = y

Write the formula / expansion for (a + b)2.

(a + b)2 = a2 + 2ab + b2

Substitute x for a and y for b.

(x + y)2 = x2 + 2(x)(y) + y2

(x + y)2 = x2 + 2xy + y2

So, the expansion of (x + y)2 is

x2 + 2xy + y2

Problem 2 :

Expand :

(x + 2)2

Solution :

(x + 2)2 is in the form of (a + b)2

Comparing (a + b)2 and (x + 2)2, we get

a = x

b = 2

Write the formula / expansion for (a + b)2.

(a + b)2 = a2 + 2ab + b2

Substitute x for a and 2 for b.

(x + 2)2 = x2 + 2(x)(2) + 32

(x + 2)2 = x2 + 4x + 9

So, the expansion of (x + 2)2 is

x2 + 4x + 9

Answered by rupaliparida2972
8

1) (a + b)² = a² + 2 ab + b²

(2) (a + b)² = (a - b)² + 4 ab

(3) (a - b)² = a² - 2 ab + b²

(4) (a - b)² = (a + b)² - 4 ab

(5) a² - b² = (a + b) (a - b)

(6) (x+a) (x+b) =x² + (a + b) x+a b

(7) (a+b)³=a³+3a²b+3ab²+b³

(8) (a+b)³=a³+b³+3ab(a+b)

(9) (a-b)³=a³-3a²b+3ab²-b³

(10) (a-b)³=a³-b³-3ab(a-b)

(11) a³+b³ = (a+b)(a²-ab+b²)

(12) a³+b³=(a+b)³-3 ab(a + b)

(13) a³-b³= (a-b)(a²+ab+ b²)

(14) a³-b³=(a-b)³ +3ab(a-b)

(15) (a+b+c)²= a²+b²+c² +2ab+2bc+2ca

(16) (a+b-c)²=a²+b²+c² +2ab-2bc-2ca

(17) (a-b+c)²= a²+b²+c²-2ab-2bc+2ca

(18) (a-b-c)²= a²+b²+c²-2ab+2bc-2ca

(19) a² + b² = (a + b)² - 2ab

(20) a² + b² = (a - b)² + 2ab

(21) a² + b²=½ [(a+b)²-(a-b)²]

(22) ab = ¼[(a+b)²- (a - b)²]

(23) (a + b + c)³ = a³ + b³ + c³ + 3a²b + 3a²c + 3ab² + 3b²c + 3ac² + 3bc² + 6abc

(24) (a + b - c)³ = a³ + b³ - c³ + 3a²b - 3a²c + 3ab² - 3b²c + 3ac² + 3bc² - 6abc

(25) (a - b + c)³ = a³ - b³ + c³ - 3a²b + 3a²c + 3ab²+ 3b²c + 3ac² - 3bc² - 6abc

(26) (a - b - c)³ = a³ - b³ - c³ - 3a²b - 3a²c + 3ab² - 3b²c + 3ac² - 3bc² + 6abc

Similar questions