Math, asked by gshyam, 1 year ago

solve for(1/1-2i+3/1+i)(3+4i/2-4i)

Attachments:

Answers

Answered by jatingupta58
15
[ (1+i) +3(1-2i) / (1-2i) ( 1+i)] * (3+4i/2-4i) {By taking LCM}. = [(1 + i) + (3 - 6i) / 1 + i - 2i - 2i2] [3+4i / 2-4i].
Answered by pinquancaro
78

Answer:

(\frac{1}{1-2i}+\frac{3}{1+i})(\frac{3+4i}{2-4i})=\frac{1}{4}+\frac{9i}{4}

Step-by-step explanation:

Given : Expression (\frac{1}{1-2i}+\frac{3}{1+i})(\frac{3+4i}{2-4i})

To find : Express the given expression in the form of a+ib?

Solution :

(\frac{1}{1-2i}+\frac{3}{1+i})(\frac{3+4i}{2-4i})

Solve the first bracket,

=(\frac{1+i+3-6i}{(1-2i)(1+i)})(\frac{3+4i}{2-4i})

=(\frac{4-5i}{1+i-2i-2i^2})(\frac{3+4i}{2-4i})

=(\frac{4-5i}{3-i})(\frac{3+4i}{2-4i})

Multiply both bracket,

=\frac{(4-5i)(3+4i)}{(3-i)(2-4i)}

=\frac{12-15i+16i-20i^2}{6-12i-2i+4i^2}

=\frac{32+i}{2-14i}

Rationalize the denominator,

=\frac{32+i}{2-14i}\times \frac{2+14i}{2+14i}

=\frac{(32+i)(2+14i)}{(2-14i)(2+14i)}

=\frac{64+448i+2i+14i^2}{2^2-(14i)^2}

=\frac{50+450i}{4+196}

=\frac{50+450i}{200}

=\frac{50}{200}+\frac{450i}{200}

=\frac{1}{4}+\frac{9i}{4}

Here, a=\frac{1}{4},b=\frac{9}{4}

Therefore, (\frac{1}{1-2i}+\frac{3}{1+i})(\frac{3+4i}{2-4i})=\frac{1}{4}+\frac{9i}{4}

Similar questions