solve for 50 points
Attachments:
Answers
Answered by
4
given
a/b = b/c
=>b^2 =ac
to proof
a^2 + b^2 + c^2 = (a + b+ c)(a - b + c)
proof
LHS
a^2 + b^2 + c^2:
= (a+ b +c)^2 - 2( ab + bc+ ca)
= (a+ b+ c)^2 -2(ab + bc + b^2)
= (a+b+c)^2 - 2b(a+ b + c)
= (a+b+c)(a - b + c)
RHS
hence LHS = RHS
identity used
(a + b + C)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
Answered by
2
Answer:
a²+ b²+ c² :
= (a+ b +c)² - 2( ab + bc+ ca)
= (a+ b+ c)²-2(ab + bc + b²)
= (a+b+c)²- 2b(a+ b + c)
= (a+b+c)(a - b + c)
RHS
hence LHS = RHS
Similar questions
Math,
6 months ago
Math,
6 months ago
English,
6 months ago
Psychology,
1 year ago
India Languages,
1 year ago
Math,
1 year ago
Biology,
1 year ago