English, asked by JayaAravindh, 9 months ago

Solve for A, B, C, given that the digits are distinct.

aa+bb+cc=abc​

Answers

Answered by rocker36170
1

Answer:

=aa+bb+cc=ABC

=a^2+b^2+c^2=abc

=by cancellention.

you will get answers = ABC

hope you find it useful.

☺☺

or

=aa+bb+cc=abc

=by shifting alphabets on right side the sign becomes negative.,

so =a+b+c=a-a×b-b×c-c

so final answer is = ABC

Answered by puzzlepedia
8

Answer:

11+99+88=198

Explanation:

AA+BB+CC=ABC

Substitute Maximum Possible Values:

    99+88+77=264

    So,A is less than 300

    (i.e.,) A is 1 or 2 (0 is not Possible because A,B,C are +ve numbers)

=====>Lets take Units digit:

    A+B+C=C

      A+B=0 (0 is a units digit)

      Substitute A values:

         1+B=0        or   2+B=0

         1+9=0(10)    or   2+8=0(10)

         Above solution we get sum as 10 where 1 is a tens digit

                                           and 0 is a units digit.

     We get,

     A=1 and B=9

               (or)

     A=2 and B=8

      11+99+CC=19C   (or)   22+88+CC=28C

        110+CC=19C   (or)     110+CC=28C   28C>264 (Maximum Possible

                                                    sum 99+88+77=264)  

                                                So,it is not Possible.

=======>Lets take Tens digit from 110+CC=19C:

          1+C=9

            C=8

Finally we get A=1 B=9 C=8

   11+99+88=198

Easy Explanation In Puzzle Pedia:

      https://www.youtube.com/watch?v=-fW8i5w5A2w

Puzzle Pedia Youtube Channel:

      https://www.youtube.com/channel/UCVtK9k5zz-pgwX5Ah-wYiCQ

Attachments:
Similar questions