☆ Solve for a comparing with the
Standard equation in
→ 4x² - 4 ax +(a²-b^2)=0
Answers
Answered by
1
Answer:
Given: 4x² - 4ax + (a² - b²) = 0.
Here in this equation, constant term = (a² - b²) = (a+b)(a-b)
Coefficient of middle term= - 4a
Also, Coefficient of the middle term= -[2(a+b)+2(a+b)]
4x² - 4ax + (a² - b²) = 0.
4x² -[2(a+b)+2(a-b)]x + (a+b)(a-b)= 0
4x² - 2(a+b)x - 2(a-b)x + (a+b)(a-b)= 0
[4x² - 2(a+b)x ] - [ 2(a- b)x + (a+b)(a-b)]= 0
2x [ 2x-(a+b)] -(a-b)[2x - (a+b)]
[2x - (a+b)] [2x-(a-b)]= 0
[2x - (a+b)] = 0 or [2x-(a-b)]= 0
2x = a + b or 2x = a-b
x =( a+b)/2 or x= (a-b)/2
Similar questions