solve for A if,
Answers
Answered by
4
Question :---- Solve for A if sinA/(1+cosA) + (1+cosA)/sinA = 4 .
Formula used :---
- (a+b)² = a² + b² + 2ab
- sin²A + cos²A = 1
- 1/sinA = cosecA .
- cosec30° = 2 .
Solution :----
Solving the LHS , by taking the LCM first we get,
→ sinA/(1+cosA) + (1+cosA) / sinA
→ [sin²A + (1 + cosA)²] / sinA(1 + cosA)
using (a+b)² = a² + b² + 2ab in numerator now,
→ (sin²A + 1 + cos²A + 2cosA) / sinA(1 + cosA)
using sin²A + cos²A = 1 in numerator now,
→ ( 2 + 2cosA ) / sinA(1+cosA)
→ 2(1+cosA) / sinA(1+cosA)
→ 2/sinA
→ 2cosecA
Now, putting this to RHS we get,
→ 2cosecA = 4
Dividing both sides by 2 ,
→ cosecA = 2
Now putting 2 = cosec30° ,
→ cosecA = cosec30°
→ A = 30°
Hence, value of A is 30° .
Answered by
10
Taking LCM,
We know that,
Therefore,
Taking common,
We know that
Hence,
Similar questions