Math, asked by gnapithanl, 11 months ago

solve for A if,
\frac{sin A}{1+cos A} +\frac{1+ cos A}{sin A} =4

Answers

Answered by RvChaudharY50
4

Question :---- Solve for A if sinA/(1+cosA) + (1+cosA)/sinA = 4 .

Formula used :---

  • (a+b)² = a² + b² + 2ab
  • sin²A + cos²A = 1
  • 1/sinA = cosecA .
  • cosec30° = 2 .

Solution :----

Solving the LHS , by taking the LCM first we get,

sinA/(1+cosA) + (1+cosA) / sinA

→ [sin²A + (1 + cosA)²] / sinA(1 + cosA)

using (a+b)² = + + 2ab in numerator now,

→ (sin²A + 1 + cos²A + 2cosA) / sinA(1 + cosA)

using sin²A + cos²A = 1 in numerator now,

→ ( 2 + 2cosA ) / sinA(1+cosA)

→ 2(1+cosA) / sinA(1+cosA)

→ 2/sinA

→ 2cosecA

Now, putting this to RHS we get,

2cosecA = 4

Dividing both sides by 2 ,

cosecA = 2

Now putting 2 = cosec30° ,

cosecA = cosec30°

→ A = 30°

Hence, value of A is 30° .

Answered by Nereida
10

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

\leadsto \tt {\dfrac {sin A}{1+cosA}+\dfrac {1+ cos A}{sin A} =4}

Taking LCM,

\leadsto\tt {\dfrac {{sin}^{2}A+{(1+cosA)}^{2}}{sinA+sinA\:cosA}=4}

We know that, \tt {{sin}^{2}\theta+{cos}^{2}\theta=1}.

Therefore,

\leadsto\tt {\dfrac {1+1+2\:cosA}{sinA+sinA\:cosA)}=4}

\leadsto\tt {\dfrac {2+2\:cosA}{sinA+sinA\:cosA}=4}

Taking common,

\leadsto\tt {\dfrac {2 \cancel {(1+cosA)}}{sinA\cancel {(1+cosA)}}=4}

\leadsto\tt {\dfrac {2}{sinA}=4}

\leadsto\tt {2\:cosecA=2}

\leadsto \tt {cosecA=2}

We know that \leadsto \tt {cosec \:30^{\circ}=2.}

Hence,

\leadsto\tt {cosecA=cosec\:30^{\circ}}

 \huge\leadsto {\boxed {\tt {So, A = 30^{\circ}}}}

\rule{200}2

Similar questions