Math, asked by AmHarshuxD, 10 months ago

Solve for A if,
 \frac{sin \: a}{1 + cos \: a}  +  \frac{1 + cos \: a \: }{sin \: a}  = 4

Answers

Answered by Anonymous
43

\huge\bf\red{\underline{\underline{Solution}}}\::

\\

{\Large {\mathfrak {\orange{Given }}}}\begin{cases}\bf\blue{\dfrac {sin A}{1+cosA}+\dfrac {1+ cos A}{sin A} =4}\end{cases}

\\

\rm\underline\pink{Taking \ LCM}

\\

\longrightarrow\:\:\:\rm\purple {\dfrac {{sin}^{2}A+{(1+cosA)}^{2}}{sinA+sinA\:cosA}=4}

\\

\boxed{\rm{\blue{{sin}^{2}\theta+{cos}^{2}\theta=1}}}

\\

\longrightarrow\:\:\:\rm\green {\dfrac {1+1+2\:cosA}{sinA+sinA\:cosA)}=4}

\\

\longrightarrow\:\:\:\rm\purple {\dfrac {2+2\:cosA}{sinA+sinA\:cosA}=4}

\\

\longrightarrow\:\:\:\rm\green {\dfrac {2 \cancel {(1+cosA)}}{sinA\cancel {(1+cosA)}}=4}

\\

\longrightarrow\:\:\:\rm\purple {\dfrac {2}{sinA}=4}

\\

\longrightarrow\:\:\:\rm\green {2\:cosecA=2}

\\

\longrightarrow\:\:\: \rm\purple {cosecA=2}

\\

\longrightarrow\:\:\: \rm\underline\pink {cosec \:30^{\circ}=2}

\\

\star\:\:{\underline{\underline{\orange{\boxed{\sf{A \ = \ 30^{\circ} }}}}}}

Similar questions