Math, asked by 123456789sp, 1 month ago

solve for brainleist answer
with method​

Attachments:

Answers

Answered by XT06
0

Answer:

16

Step-by-step explanation:

Attachments:
Answered by Anonymous
50

Given :-

( a - b ) = 7 and ab = 51.75

To Find :-

 \quad \maltese { \sf { \cfrac{(a² - b²)}{(a - b )} } }

Solution :-

We knows a algebraic identity ;

  \quad \qquad { \bigstar { \underline { \boxed { \boxed { \sf { \bf { \mathfrak { \pink { a² - b² = ( a + b ) ( a - b ) } } } } } } } { \bigstar } } }

Now let's start which we have to find ;

 \quad \qquad \maltese { \sf { \cfrac{(a² - b²)}{(a - b )} } }

 { : \longmapsto { \sf { \cfrac{(a - b) (a + b)}{(a - b )} \quad \qquad {  \bigg [ \because a² - b² = ( a + b ) ( a - b ) } \bigg ] } } }

After Cancelling ( a - b ) we gets ;

 { : \longmapsto { \sf { ( a + b ) } } }

We also knows another identity ;

  \quad \qquad { \bigstar { \underline { \boxed { \boxed { \sf { \bf { \mathfrak { \pink { ( a - b )² = a² + b² - 2ab  } } } } } } } { \bigstar } } }

Putting all the known values we have ;

 { : \longmapsto { \sf  { ( 7 )² = a² + b² - 2 × 51.75  } } }

 { : \longmapsto { \sf  { 49 = a² + b² -  103.50 } } }

 { : \longmapsto { \sf  { a² + b² = 49 + 103.5 } } }

 : \longmapsto { \sf  { a² + b² = 152.5 } }

Adding " 2ab " to both sides we get ;

 { : \longmapsto { \sf  { a² + b² + 2ab = 152.5 + 2ab } } }

Put the value of " ab " on RHS ;

 { : \longmapsto { \sf  { a² + b² + 2ab = 152.5 + 2 × 51.75 } } }

 { : \longmapsto { \sf  { a² + b² + 2ab = 152.5 + 103.5 } } }

 { : \longmapsto { \sf  { a² + b² + 2ab = 256 } } }

We knows another Identity i.e ;

 \quad \qquad { \bigstar { \underline { \boxed { \boxed { \sf { \bf {\mathfrak {\pink { ( a + b )² = a² + b² + 2ab } } } } } } } { \bigstar } } }

So By using this identity we have ;

 { : \longmapsto { \sf  { ( a + b )²= 256 } } }

 { : \longmapsto { \sf  { ( a + b ) = \sqrt{256} } } }

 { : \longmapsto { \sf  { ( a + b ) = \pm 16 } } }

But as here only Positive values are given . So , our Answer is 16

Henceforth , The Required Answer is Option ( 1 ) 16 !

Similar questions