Solve for θ : (cos θ + i sin θ) (cos 2θ + i sin 2θ) …. (cos nθ + i sin nθ) = i .
Answers
Given : (cos θ + i sin θ) (cos 2θ + i sin 2θ) …. (cos nθ + i sin nθ) = i
To Find : θ
Solution:
(cos θ + i sin θ) =
(cos 2θ + i sin 2θ) =
(cos nθ + i sin nθ) =
(cos θ + i sin θ) (cos 2θ + i sin 2θ) …. (cos nθ + i sin nθ)
= . .. .. ..
=
1 + 2 + 3 + ... + n = n(n + 1)/2
=
= cos {n(n+1)/2}θ + i sin {n(n+1)/2}θ
cos {n(n+1)/2}θ + i sin {n(n+1)/2}θ = i
=> cos {n(n+1)/2}θ = 0
sin {n(n+1)/2}θ = 1
{n(n+1)/2}θ = π/2
=> θ = π/n(n+1)
or {n(n+1)/2}θ = 2k π + π/2 generalized k being integer
=> θ = (4k π + π)/n(n+1)
=> θ = (4k + 1)π/n(n+1)
Learn More:
Write z=i in trigonometric form - Brainly.in
brainly.in/question/9130337
60 z is a complex number such that z+1/z=2cos3°,then the value of z^2000+1/z^2000+1 is
https://brainly.in/question/6666657
Answer:
LHS=2(sin 6 θ+cos 6 θ)−3(sin 4 θ+cos 4θ)+1
=2[(sin 2 θ) 3 +(cos 2 θ) 3 ]−3[(sin 2 θ) 2+(cos 2 θ) 2 ]+1
=2[(sin 2θ+cos 2 θ) 3 −3sin 2θcos 2θ(sin 2 θ+cos 2 θ)]−3[(sin 2 θ+cos 2 θ) 2 −2sin 2 θcos2θ]+1
=2(1−3sin 2 θcos 2 θ)−3(1−2sin θ cos 2 θ)+1
=2−6sin 2 θcos 2 θ−3+6sin 2θcos 2 θ+1=0=RHS