Math, asked by Anonymous, 3 months ago

Solve for for x and y using substitution method : 2x +y = 7 4x -3y = -1 Plz don’t spam :

Answers

Answered by Anonymous
11

\dag{\sf{\large { AnswEr:\:}}}

  • \boxed{\sf{\large { Value \:of\:y=3}}}

  • \boxed{\sf{\large { Value\:of\:x=2}}}

\dag{\sf{\large { EXPLANATION:\:}}}

 \frak{Given \:\: -:} \begin{cases} \sf{Equation\:1\: =2x +y = 7  \:and}& \\\\ \sf{Equation \:2\:=4x -3y = -1 \:}\end{cases} \\\\

 \frak{To \:Find\: -:} \begin{cases} \sf{Solve \:for\:x\:and\:y\:using\:Substitution\: method.\:}\end{cases} \\\\

\dag{\sf{\large { Solution-:\:}}}

  • \implies{\sf{\large { From\:Equation \:1\:=\:2x+y=7 }}}

  • \implies{\large{\sf { \:\:2x+y=7}}}

  • \implies{\large{\sf { \:\:y=7-2x }}}

\boxed{\sf{\large { From\:(1)\:,we\:get\:y\:=\:7-2x}}}

  • \star{\sf{\large { Now\:}}}

  • \dag{\sf{\large { Substituting \:\:y\:=\:(7-2x)\:in\:Equation\:2\:,}}}

  • \implies{\sf{\large { we\:get\:,}}}

\dag{\sf{\large {Equation \:2\:=4x -3y = -1 }}}

\dag{\sf{\large { Now-:\:}}}

  • \implies{\sf{\large { \:\:4x-3(7-2x)=-1 }}}

  • \implies{\sf{\large { \:\:4x-21+6x=-1 }}}

  • \implies{\sf{\large { \:\:4x +6x\:-21=-1 }}}

  • \implies{\sf{\large { \:\:10x\:-21=-1 }}}

  • \implies{\sf{\large { \:\:10x\:=-1+21 }}}

  • \implies{\sf{\large { \:\:10x\:=20 }}}

  • \implies{\sf{\large { \:\:x\:=\dfrac{20}{2} }}}

  • \implies{\sf{\large { \:\:x\:=2 }}}

\dag{\sf{\large { Therefore-:\:}}}

  • \boxed{\sf{\large { x=2}}}

\star{\sf{\large { Substituting \:\:x\:=\:2\:in\:Equation\:1\:,}}}

  • \dag{\sf{\large {Equation \:1\:=2x +y = 7 }}}

\dag{\sf{\large { Now-:\:}}}

  • \implies{\sf{\large { \:\:2\times 2 + y = 7 }}}

  • \implies{\sf{\large { \:\:4+ y = 7 }}}

  • \implies{\sf{\large { \:\: y = 7-4 }}}

  • \implies{\sf{\large { \:\: y = 3 }}}

\dag{\sf{\large { Therefore-:\:}}}

  • \boxed{\sf{\large { y=3}}}

\dag{\sf{\large { Hence-:\:}}}

  • \boxed{\sf{\large { y=3}}}

  • \boxed{\sf{\large { x=2}}}

_____________________________

♡ More To know ♤

  • Substitution Method-: In Substitution method we found value of one variable from Equation one the we substitute that value in Equation two from that we can find the exact value of one variable and that value we can put in the Equation one and find the value of Second Variable .
  • Hence , From that method we can find exact value of both two variables .

___________________♡______________________

Similar questions