Math, asked by osankverma2004, 1 year ago

Solve for inequality:- (1/x-5 + 1/x+5 + 1/x-7 + 1/x+7) > 0

Answers

Answered by DrNykterstein
0

</p><p>  \sf  \rightarrow \quad  \left(  \frac{1}{x - 5}  +  \frac{1}{x + 5}  +  \frac{1}{x - 7} +  \frac{1}{x + 7}   \right) \gt 0 \\  \\  \sf  \rightarrow \quad  \left( \frac{x  \cancel{ + 5} + x  \cancel{- 5}}{ ( x + 5)(x - 5) }  +  \frac{x   \cancel{+ 7} + x  \cancel{- 7}}{(x + 7)(x - 7)}  \right) \gt 0 \\  \\  \sf  \rightarrow \quad \frac{2x( {x}^{2}  -  {7}^{2} ) + 2x( {x}^{2} -  {5}^{2} ) }{(x + 5)(x - 5)(x + 7)(x - 7)}  \gt 0 \\  \\  \sf  \rightarrow \quad  \frac{2x( {x}^{2}   - 25 +  {x}^{2} - 49) }{(x + 5)(x - 5)(x + 7)(x - 7)}  \gt 0 \\  \\  \sf  \rightarrow \quad  \frac{2x(2 {x}^{2} - 24) }{(x + 5)(x - 5)(x  +  7)(x  -  7)}  \gt 0 \\  \\  \sf  \rightarrow \quad  \frac{4x( {x}^{2} - 12) }{(x + 5)(x - 5)(x  +  7)(x  -  7)}  \gt 0 \\  \\ \sf  \rightarrow \quad  \frac{4x (x + 2 \sqrt{3})(x - 2 \sqrt{3}) }{(x + 5)(x - 5)(x  +  7)(x  -  7)}  \gt 0</p><p>

</p><p> \sf Critical  \: points:  5, -5, 7, -7, 0, 2\sqrt{3} , - 2\sqrt{3} \\ </p><p>

</p><p> \sf By \:  the \:  wavy  \: curve  \: method , \:  we  \: get </p><p></p><p>

</p><p> \sf x \in  \{  - \infty,  \:  - 7 \} \:  \cup \:  \{ - 5,  \: -2\sqrt{3} \}  \:  \cup  \:  \{ 0, \: 2\sqrt{3} \} \: \cup \: \{ 5, \: \infty \}</p><p>

Similar questions