Math, asked by singhuttara08, 7 months ago

Solve for m:

(-5)^m-1 / (-5)^2 = (-5)^-8​

Answers

Answered by mathematicalbonanza
0

Answer:

hhhhhhhhhhhhhhhhh

Step-by-step explanation:

hhhhhhhhhhhhhhhhhh

Answered by Anonymous
1

GIVEN :-

  • \rm{( - 5) ^{m - 1} } \: \div ( - 5) = ( - 5) ^{ - 8}

TO FIND :-

  • \rm{ value \: of \: m \: }

SOLUTION :-

\implies \: \rm{( - 5) ^{m - 1} } \: \div ( - 5) = ( - 5) ^{ - 8}

\implies\rm{ \dfrac{( - 5) ^{m - 1}} {( - 5) ^{2} \: \: \: \: } = ( - 5) ^{ - 8}}

\implies

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{ \boxed{ { \frac{ {a}^{m} }{ {a}^{n} } \: = \: a ^{m - n} }}}

\implies \rm{ ({ - 5})^{m - 1 - 2} } = ( - {5})^{ - 8}

\implies \rm{ ({ - 5})^{m - 3} } = ( - {5})^{ - 8}

\implies \rm{ m \: - 3 = - 8}

\implies \boxed{ \boxed { \rm { m \: = -5}}}

OTHER INFORMATION

Basic formulas in Powers and Roots

Some basic formulas used to solve questions on exponents are

(am)n = (an)m = amn

am.an = am+n

a-m = 1/am

am/an = am-n = 1/an-m

(ab)n = anbn

(a/b)n = an/bn

aⁿ = 1 ( where n = 0 )

Similar questions