Math, asked by Shashank1811, 1 year ago

solve for the roots of the equation: 15y² - 40y + 16 = 0


siddhartharao77: is my answer correct or wrong..

Answers

Answered by siddhartharao77
2
Given Equation is in the form of ax^2 + bx + c = 0.

Where a = 15, b-40, c=16.

We know that for a quadratic equation ax^2+ bx + c = 0, the solutions are:

(1)


x =  \frac{-b+ \sqrt{b^2 - 4ac} }{2a}

x =  \frac{-(-40) +  \sqrt{(-40)^2 - 4(15)(16)} }{2(15)}

          = \ \textgreater \   \frac{40 +  \sqrt{1600-960} }{30}

           = \ \textgreater \  \frac{40 +  \sqrt{640} }{30}

          = \ \textgreater \   \frac{40 + 8 \sqrt{10} }{30}

          = \ \textgreater \   \frac{8(5 +  \sqrt{10} )}{30}

          = \ \textgreater \   \frac{4(5 +  \sqrt{10}) }{15}



(2)

x =  \frac{-b- \sqrt{b^2 - 4ac} }{2a}

= \ \textgreater \   \frac{-(-40)- \sqrt{(-40)^2 - 4 * 15 * 16} }{2 * 15}

= \ \textgreater \   \frac{40 -  \sqrt{1600 - 960} }{30}

= \ \textgreater \   \frac{40 -  \sqrt{640} }{30}

 = \ \textgreater \  \frac{40 - 8 \sqrt{10} }{30}

 = \ \textgreater \  \frac{8(5 -  \sqrt{10}) }{30}

= \ \textgreater \   \frac{4(5 -  \sqrt{10)} }{15}



Hope this helps!

siddhartharao77: :-)
Similar questions