Math, asked by hannupadhyay1973, 1 month ago

solve for the value of x :both 18 and 20​

Attachments:

Answers

Answered by senboni123456
1

We have

 log_{ \frac{1}{2} } \bigg \{  log_{3} \bigg(  \frac{x + 1}{x - 1} \bigg) \bigg \} \geqslant 0 \\

 \implies  log_{3} \bigg(  \frac{x + 1}{x - 1} \bigg) \leqslant 1 \\

 \implies  \frac{x + 1}{x - 1} \leqslant 3\\

 \implies  \frac{x + 1}{x - 1} - 3 \leqslant 0\\

 \implies  \frac{x + 1 - 3x + 3}{x - 1}  \leqslant 0\\

 \implies  \frac{ - 2x + 4}{x - 1}  \leqslant 0\\

 \implies  \frac{ 2x  -  4}{x - 1}  \geqslant 0\\

 \implies  \frac{ 2(x  -  2)}{x - 1}  \geqslant 0\\

 \implies  \frac{x  -  2}{x - 1}  \geqslant 0\\

 \implies \: x \in( -  \infty ,1)  \: \cup \:  [ 2, \infty )

Similar questions