Math, asked by kinnariderasari, 6 months ago

Solve for the values of x and y
 \frac{x}{2} + y = 0.8 \\  \frac{7}{x +  \frac{y}{2} } = 10

Answers

Answered by yogesharma1977
1

Answer:

x=1/5

y=7/10

Step-by-step explanation:

hope you satisfied

mark as brainlist

follow for more solutions

Attachments:
Answered by Shubhendu8898
21

Answer:

x = 2/5 , y = 3/5

Step-by-step explanation:

Given

\frac{x}{2}+y=0.8\\\;\\\frac{x+2y}{2}=0.8\\\;\\x+2y=0.8\times2\\\;\\x+2y=1.6\\\;\\2x+4y=3.2\;\;\;\;\;\;\;\;.......i)

and

\frac{7}{x+\frac{y}{2}}=10\\\;\\\frac{7}{\frac{2x+y}{2}}=10\\\;\\\frac{7\times2}{2x+y}=10\\\;\\\frac{14}{2x+y}=10\\\;\\\frac{2x+y}{14}=\frac{1}{10}\\\;\\2x+y=\frac{14}{10}\\\;\\2x+y=\frac{7}{5}\;\;\;\;\;\;\;\;..........ii)

Subtracting Equation i) from ii)

(2x + y) - (2x + 4y) = 7.5 - 3.2

-3y = 3.2 - 7.5

-3y = -1.8

y = 1.8/3

y = 18/30

y = 3/5

Putting value of y  in equation i)

2x + 4(3/5) = 3.2

2x + 12/5 = 3.2

2x + 2.4 = 3.2

2x = 3.2 - 2.4

2x = 0.8

x = 0.8/2

x = 8/20

x = 2/5

Similar questions