Math, asked by Jannatbano2003, 1 year ago

solve for x : 1/2a+b+2x = 1/2a +1/b+ 1/2x

Answers

Answered by abhi178
22
1/(2a + b + 2x) = 1/2a + 1/b + 1/2x

or, 1/(2a + b + 2x) - 1/2a = 1/b + 1/2x

or, (2a -2a - b - 2x)/(2a + b + 2x)2a = 1/b + 1/2x

or, -(b + 2x)/(2a + b + 2x)2a = (2x + b)/2xb

[ taking (b + 2x) from both sides so, one solution is from b +2x = 0 , x = -b/2 ]

or, -1/(2a + b + 2x)2a = 1/2xb

or, -2xb = (2a + b + 2x)2a

or, -xb = (2a + b + 2x)a

or, -xb = 2a² + ab + 2xa

or, 2a² + ab + 2xa + xb = 0

or, a(2a + b) + x(2a + b) = p

or, (x + a)(2a + b) = 0

or, x + a = 0 => x = -a

hence, x = -a and -b/2

guptasidd1707: noice
Answered by sherafgan354
3

Answer:

x=\frac{2}{b}   or x = 1-b²

Step-by-step explanation:

Given Equation is

\frac{1}{2}a + b + 2x = \frac{1}{2}a + \frac{1}{b} + \frac{1}{2}x

Now subtracting \frac{1}{2}a from both sides of the equation

\frac{1}{2}a + b + 2x - \frac{1}{2}a = \frac{1}{2}a + \frac{1}{b} + \frac{1}{2}x - \frac{1}{2}a

b + 2x = \frac{1}{b} + \frac{1}{2}x

Subtratcing b and  from both sides \frac{1}{2}x from both sides

2x-\frac{1}{2}x=\frac{1}{b}-b

\frac{1}{2}x=\frac{1-b²}{b}

Multiplying both sides by 2

  x=\frac{2}{b}(1-(b)²)

x= \frac{2}{b}                         or x= 1-b²

Similar questions