Math, asked by pranshu711, 8 months ago

Solve for x
1/a + 1/b + 1/x =1/a+b+x

Answers

Answered by mahirakhan3854
0

Correct Question :

\displaystyle \text{{Solve for x : }}Solve for x :

\displaystyle \sf{{\frac{1}{a+b+x} =\frac{1}{a} +\frac{1}{b} +\frac{1}{x} }}

a+b+x

1

=

a

1

+

b

1

+

x

1

Answer:

\displaystyle \sf{{x=-a \ \ OR \ \ x=-b}}x=−a OR x=−b

Step-by-step explanation:

\displaystyle \sf{{Given : }}Given:

\displaystyle \sf{{\frac{1}{a+b+x} =\frac{1}{a} +\frac{1}{b} +\frac{1}{x} }}

a+b+x

1

=

a

1

+

b

1

+

x

1

\displaystyle \text{{Take $\frac{1}{\text{x}} $ L.H.S. side : }}Take

x

1

L.H.S. side :

$$\begin{lgathered}\displaystyle \sf{{\frac{1}{a+b+x}-\frac{1}{x} =\frac{1}{a} +\frac{1}{b} }}\\\\\\\displaystyle \sf{{\frac{x-(a+b+x)}{(a+b+x)(x)}=\frac{b+a}{ab} }}\end{lgathered}$$

$$\begin{lgathered}\displaystyle \sf{{\frac{x-a-b-x}{(a+b+x)(x)}=\frac{a+b}{ab} }}\\\\\\\displaystyle \sf{{\frac{-(a+b)}{(ax+bx+x^2)}=\frac{a+b}{ab} }}\end{lgathered}$$

$$\displaystyle \text{{Now (a + b) get cancel out : }}$$

$$\begin{lgathered}\displaystyle \sf{{\frac{-1}{(ax+bx+x^2)}=\frac{1}{ab} }}\\\\\\\displaystyle \sf{{ax+bx+x^2=-ab}}\\\\\\\displaystyle \sf{{x^2+ax+bx+ab=0}}\end{lgathered}$$

$$\displaystyle \text{{Take out 'x' and 'b' common : }}$$

$$\begin{lgathered}\displaystyle \sf{{x(x+a)+b(x+a)=0}}\\\\\\\displaystyle \sf{{(x+a)(x+b)}}\end{lgathered}$$

$$\begin{lgathered}\displaystyle \sf{{\rightarrow x+a=0}}\\\\\\\displaystyle \sf{{\rightarrow x = -a}}\\\\\\\displaystyle \sf{{OR}}\\\\\\\displaystyle \sf{{\rightarrow x+b=0}}\\\\\\\displaystyle \sf{{\rightarrow x=-b}}\end{lgathered}$$

$$\displaystyle \text{{Therefore , the value of x is '-a' OR ' -b' .}}$$

Answered by Anonymous
1

plz refer to this attachment

Attachments:
Similar questions