Math, asked by Nabhanjabir, 1 year ago

Solve for x : 1/(a +b+x) = 1/a + 1/b + 1/x , [ a ≠ 0 , b ≠ 0 , x ≠ 0 , x ≠ - (a + b)]

Answers

Answered by MaheswariS
46

\textbf{Given equation is}

\displaystyle\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}

\displaystyle\frac{1}{a+b+x}=\frac{bx+ax+ab}{abx}

\displaystyle\frac{1}{a+b+x}=\frac{(a+b)x+ab}{abx}

\displaystyle\,abx=(x+(a+b))((a+b)x+ab)

\displaystyle\,abx=(a+b)x^2+abx+(a+b)^2x+ab(a+b)

\displaystyle\,(a+b)x^2+(a+b)^2x+ab(a+b)=0

\text{Divide both sides by a+b, we get}

\displaystyle\,x^2+(a+b)x+ab=0

\displaystyle\,(x+a)(x+b)=0

\implies\displaystyle\bf\,x=-a,-b

\therefore\textbf{The solution set is $\{-a,-b\}$}

Find more:

1.Solve the following quadratic equations by factorization:(x+3/x-2)-(1-x/x)=17/4

https://brainly.in/question/15926221

2.A plus b the whole square x square + 8 a square minus b square into X + 16 a minus b the whole square equal to zero solve for x

https://brainly.in/question/15290222

Answered by krrishkaran123
8

♤YOUR SOLUTION SET FOR THIS QUESTION SHALL BE {-a,-b} ♤

Similar questions