Math, asked by hemanthrocky98, 11 months ago

Solve for x. 1/a+b+x = 1/a + 1/b + 1/x (where a+b+c is not =0 and a,b,x is not = 0) if u dont understand or else see the image there is the question plzzz answer it to me guysss
i will follow u and mark them as brilliant answer
if u have the answer with u plz take the photo of it and plzzz Send me guys plzzzz its urgent​

Attachments:

Answers

Answered by Anonymous
41

Answer

x = -a, - b

\rule{200}2

Explanation-

\implies\:\sf{\dfrac{1}{a+b+x}\:=\:\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{x}}

\implies\:\sf{\frac{1}{a+b+x}\:=\:\frac{1}{a}+\frac{1}{b}+\frac{1}{x}}

\implies\:\sf{\frac{1}{a+b+x}-\frac{1}{x}\:=\:\frac{1}{a}+\frac{1}{b}}

\implies\:\sf{\frac{x-(a+b+x)}{x(a+b+x)}\:=\:\frac{1}{a}+\frac{1}{b}}

\implies\:\sf{\frac{-(a+b)}{x(a+b+x)}\:=\:\frac{a+b}{ab}}

(a + b) cancel throughout

\implies\:\sf{\frac{-1}{x(a+b+x)}\:=\:\frac{1}{ab}}

Cross-multiply them

⇒ -ab = x² + (a + b)x

⇒ x² + (a + b)x + ab = 0

The above equation is in the form, ax² + bx + c = 0. So, we can solve them by Quadratic equation or by splitting the middle term.

Where, a = 1, b = (a + b) and c = ab

Using Quadratic formula

D = √(b² - 4ac)

⇒ D = √[(a + b)² - 4(1)(ab)]

⇒ D = √(a² + b² + 2ab - 4ab)

⇒ D = √(a² + b² - 2ab)

⇒ D = √(a - b)²

⇒ D = (a - b)

Now, x = \sf{\frac{-b \pm D}{2a}}

\implies\:\sf{\frac{ {-(a+b)} \pm  (a-b) }{2(1)}}

\implies\:\sf{\frac{ {-a-b} + (a-b) }{2}}

\implies\:\sf{\frac{-2b}{2}\:=\:-b}

Similarly,

\implies\:\sf{\frac{ {-a-b} - (a-b) }{2}}

\implies\:\sf{\frac{ -a-b - a+b }{2}}

\implies\:\sf{\frac{-2a}{2}\:=\:-a}

Therefore,

\implies\:\sf{x\:=\:-a, \:-b}

Answered by Anonymous
21

{\underline{\underline{\huge{\mathtt{Question:-}}}}}

if \:  \frac{1}{a + b + x}  =  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{x}

(where a+b+x≠0 and a,b,x≠ 0)

Then find the value of X.

{\underline{\underline{\huge{\mathtt{Solution:-}}}}}

  \frac{1}{a + b + x}  =  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{x}  \\  =  >  \frac{1}{a + b + x}  -  \frac{1}{x}  =  \frac{1}{a}  +  \frac{1}{b}  \\  =  >  \frac{x - (a + b + x)}{(a + b + x)x}  =  \frac{b + a}{ab}  \\  =  >  \frac{x - a - b - x}{xa + bx +  {x}^{2} }  =  \frac{b + a}{ab}  \\  =  >  \frac{ - (a + b)}{xa + bx +  {x}^{2} }  =  \frac{b + a}{ab}  \\  =  >  \frac{ - 1}{xa + xb +  {x}^{2} }  =  \frac{1}{ab}  \\  =  > xa + xb +  {x}^{2}  =  - ab \\  =  > xa + xb +  {x}^{2}  + ab = 0 \\  =  >  {x}^{2}  + xa + xb + ab = 0 \\  =  > x(x + a) + b(x + a) = 0 \\  =  > (x + a)(x + b) = 0

Either,

x+a = 0

→ x = -a

Or,

x+b = 0

→ x = -b

{\underline{\underline{\huge{\mathtt{Answer:-}}}}}

X = -a, -b

Similar questions