Math, asked by shinningstar82, 2 months ago

Solve for x : 1/(x - 1) - 1/x = 1/(x + 3) - 1/(x + 4)

Correct answer Options:

1) 1.5
2) -1.5
3) 2

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\bf :\longmapsto\:\dfrac{1}{x - 1}  - \dfrac{1}{x}  = \dfrac{1}{x + 3}  - \dfrac{1}{x + 4}

\large\underline{\sf{To\:Find - }}

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: The \: value \: of \: x

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{1}{x - 1}  - \dfrac{1}{x}  = \dfrac{1}{x + 3}  - \dfrac{1}{x + 4}

  • On taking LCM of both the sides, we get

\rm :\longmapsto\:\dfrac{x - (x - 1)}{x(x - 1)}  = \dfrac{x + 4 - (x + 3)}{(x + 3)(x + 4)}

\rm :\longmapsto\:\dfrac{ \cancel x  - \cancel x +  1}{x(x - 1)}  = \dfrac{\cancel{x} + 4 - \cancel{x}  - 3}{(x + 3)(x + 4)}

\rm :\longmapsto\:\dfrac{  1 }{x(x - 1)}  = \dfrac{1}{(x + 3)(x + 4)}

\rm :\longmapsto\:(x + 3)(x + 4) = x(x - 1)

\rm :\longmapsto\: \cancel{x}^{2}  + 3x + 4x + 12 = \cancel {x}^{2}  - x

\rm :\longmapsto\:8x =  - 12

\bf\implies \boxed{ \bf{ \:x =  - \dfrac{3}{2}  =  - 1.5}}

 \boxed{ \bf{Hence,  \: Option \: (2) \: is \: correct}}

Additional Information :-

We can use the following steps to find a solution using transposition method:

  • Step 1) Identify the variables and constants in the given simple equation.

  • Step 2) Simplify the equation in and .

  • Step 3) Transpose the term on the other side to solve the equation further simplest.

  • Step 4) Simplify the equation using arithmetic operation as required that is mentioned in rule 1 or rule 2 of linear equations.

  • Step 5) Then the result will be the solution for the given linear equation.
Similar questions