Math, asked by Anonymous, 5 months ago

solve for x 1/x+1 + 3/5x+1 = 5/x+4​

Answers

Answered by Anonymous
19

\dag\:\underline{\sf AnsWer :} \\

:\implies\sf \dfrac{1}{x+1}+\dfrac{3}{5x+1} = \dfrac{5}{x+4} \\  \\  \\

:\implies\sf \dfrac{1(5x + 1) + 3(x + 1)}{(x+1)(5x + 1)}= \dfrac{5}{x+4} \\  \\

:\implies\sf \dfrac{5x + 1+ 3x + 3}{(x+1)(5x + 1)}= \dfrac{5}{x+4} \\  \\   \\

:\implies\sf \dfrac{8x +4}{ {5x}^{2} + x + 5x + 1}= \dfrac{5}{x + 4} \\  \\   \\

:\implies\sf \dfrac{8x +4}{ {5x}^{2} +6x + 1}= \dfrac{5}{x + 4} \\  \\   \\

:\implies\sf (8x +4)(x + 4)= 5( {5x}^{2} +6x + 1)\\  \\   \\

:\implies\sf  {8x}^{2} + 32x + 4x + 16 = {25x}^{2} +30x + 5\\  \\   \\

:\implies\sf  {8x}^{2} + 36x + 16 = {25x}^{2} +30x + 5\\  \\   \\

:\implies\sf {25x}^{2}  -  {8x}^{2} +30x - 36x + 5 - 16 = 0\\  \\   \\

:\implies\sf {17x}^{2} - 6x - 11= 0\\  \\   \\

:\implies\sf {17x}^{2} - 17x + 11x - 11= 0\\  \\   \\

:\implies\sf 17x(x - 1) +11(x - 1)= 0\\  \\   \\

:\implies\sf (17x + 11)(x - 1)= 0\\  \\   \\

:\implies \underline{ \boxed{\sf x =  \dfrac{ - 11}{17}  \: or \: x = 1}}\\  \\   \\

Answered by Anonymous
11

Correct Question-:

  • Solve for x -: \implies {\large{\sf{\frac{1}{x+1} +\frac{3}{5x+1} = \frac{5}{x+4}}}}

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{ The\:value\:of\:x\:is\:1\:or\:\frac{-11}{17} }}}}}

\dag{\sf{\large {EXPLANATION-:}}}

  •  \frak{Given \:\: -:} \begin{cases} \sf{Equation \: =\dfrac{1}{x+1} +\frac{3}{5x+1} = \frac{5}{x+4} \:}\end{cases} \\\\

  •  \frak{To \:Find\: -:} \begin{cases} \sf{Solve\: for \: x  \:}\end{cases} \\\\

\dag{\sf{\large {Solution,}}}

  • \implies {\large{\sf{\dfrac{1}{x+1} +\dfrac{3}{5x+1} = \dfrac{5}{x+4}}}}

\dag{\sf{\large {LCM = \:(x +1 )\:( 5x +1) }}}

  • \implies {\large{\sf{\dfrac{1(5x+1)+3(x+1)}{(x+1)(5x+1)} = \dfrac{5}{x+4}}}}

  • \implies {\large{\sf{\dfrac{5x+1+3x+3}{(x+1)(5x+1)} = \dfrac{5}{x+4}}}}

  • \implies {\large{\sf{\dfrac{5x+3x+3+1}{(x+1)(5x+1)} = \dfrac{5}{x+4}}}}

  • \implies {\large{\sf{\dfrac{8x+4}{(x+1)(5x+1)} = \dfrac{5}{x+4}}}}

  • \implies {\large{\sf{\dfrac{8x+4}{x(5x+1)+1(5x+1)} = \dfrac{5}{x+4}}}}

  • \implies {\large{\sf{\dfrac{8x+4}{5x^{2}+x+1(5x+1)} = \dfrac{5}{x+4}}}}

  • \implies {\large{\sf{\dfrac{8x+4}{5x^{2}+x+5x+1} = \dfrac{5}{x+4}}}}

  • \implies {\large{\sf{\dfrac{8x+4}{5x^{2}+6x+1} = \dfrac{5}{x+4}}}}

  • \implies {\large{\sf{(8x+4)(x+4)=5(5x^{2}+6x+1)}}}

  • \implies {\large{\sf{ 8x(x+4)+4(x+4)=5(5x^{2}+6x+1) }}}

  • \implies {\large{\sf{ 8x^{2}+32x+4(x+4)=5(5x^{2}+6x+1) }}}

  • \implies {\large{\sf{ 8x^{2}+32x+4x+16=5(5x^{2}+6x+1) }}}

  • \implies {\large{\sf{ 8x^{2}+32x+4x+16=25x^{2}+30x+5 }}}

  • \implies {\large{\sf{ 8x^{2}+36x+16=25x^{2}+30x+5 }}}

\dag{\sf{\large {By\:Shifting,}}}

  • \implies {\large{\sf{ 25 x^{2} - 8x^{2}+36x-30x+16-5=0 }}}

  • \implies {\large{\sf{ 17 x^{2} -6x-11=0 }}}

\dag{\sf{\large {By\:Expanding,}}}

  • \implies {\large{\sf{ 17 x^{2} -17x+11x-11=0 }}}

  • \implies {\large{\sf{ 17 x(x -1) +11(x-1)=0 }}}

  • \implies {\large{\sf{ (17x +11) (x-1)=0 }}}

\dag{\sf{\large {Now,}}}

  • \implies {\large{\sf{ 17x +11 =0 }}}

  • \implies {\large{\sf{ 17x  =-11 }}}

  • \implies {\large{\sf{ x  =\frac{-11}{17} }}}

\dag{\sf{\large {or,}}}

  • \implies {\large{\sf{ x -1 =0 }}}

  • \implies {\large{\sf{ x  =1 }}}

\dag{\sf{\large {Hence,}}}

  • \underline{\boxed{\star{\sf{\blue{ The\:value\:of\:x\:is\:1\:or\:\frac{-11}{17} }}}}}

________________♡___________________

Similar questions