Solve for x: [ 1/(x -3) + 2/ (x - 2) ] = 8/x ; x≠ 0, 2,3
Answers
Answer:
The value of x is 4 or 12 / 5.
Step-by-step-explanation:
The given equation is [ 1 / ( x - 3 ) + 2 / ( x - 2 ) ] = 8 / x.
We have to find the value of x where x ≠ 0, 2 or 3.
Now,
[ 1 / ( x - 3 ) + 2 / ( x - 2 ) ] = 8 / x
⇒ [ 1 × ( x - 2 ) + 2 × ( x - 3 ) / ( x - 3 ) × ( x - 2 ) ] = 8 / x
⇒ ( x - 2 + 2x - 6 / x² - 2x - 3x + 6 ) = 8 / x
⇒ ( x + 2x - 2 - 6 / x² - 5x + 6 ) = 8 / x
⇒ ( 3x - 8 / x² - 5x + 6 ) = 8 / x
⇒ ( 3x - 8 ) * x = 8 * ( x² - 5x + 6 )
⇒ 3x² - 8x = 8x² - 40x + 48
⇒ 8x² - 40x + 48 = 3x² - 8x
⇒ 8x² - 40x + 48 - 3x² + 8x = 0
⇒ 8x² - 3x² - 40x + 8x + 48 = 0
⇒ 5x² - 32x + 48 = 0
⇒ 5x² - 20x - 12x + 48 = 0
⇒ 5x ( x - 4 ) - 12 ( x - 4 ) = 0
⇒ ( x - 4 ) ( 5x - 12 ) = 0
⇒ x - 4 = 0 or 5x - 12 = 0
⇒ x = 4 or 5x = 12
⇒ x = 4 or x = 12 / 5
∴ The value of x is 4 or 12 / 5.
Step-by-step explanation: