Math, asked by suryansh4040, 10 months ago

solve for X : 1+x+x^2/1-x+x^2=171(1+x)/172(1-x)​

Answers

Answered by MaheswariS
28

\textbf{Given:}

\dfrac{1+x+x^2}{1-x+x^2}=\dfrac{171(1+x)}{172(1-x)}

\textbf{To find:}

\text{The value of x}

\textbf{Solution:}

\text{Consider,}

\dfrac{1+x+x^2}{1-x+x^2}=\dfrac{171(1+x)}{172(1-x)}

172(1-x)(1+x+x^2)=171(1+x)(1-x+x^2)

\text{Using, the following identities}

\boxed{\bf\,a^3+b^3=(a+b)(a^2-ab+b^2)}

\boxed{\bf\,a^3-b^3=(a-b)(a^2+ab+b^2)}

172(1^3-x^3)=171(1^3+x^3)

172(1-x^3)=171(1+x^3)

172-172\,x^3=171+171\,x^3

172-171=171\,x^3+172\,x^3

1=343\,x^3

x^3=\dfrac{1}{343}

x^3=(\frac{1}{7})^3

\implies\,x=\dfrac{1}{7}

\therefore\textbf{The value of x is $\bf\dfrac{1}{7}$}

Find more:

Solve the following quadratic equations by factorization:(x+3/x-2)-(1-x/x)=17/4

https://brainly.in/question/15926221

(2x-3)=root2x^2-2x+21

https://brainly.in/question/6115327

Answered by saumitpani
11

Step-by-step explanation:

thanks for giving this type of questions

Attachments:
Similar questions