Math, asked by venkappahansi666, 10 months ago

solve for x, 2x +4/x=9

Answers

Answered by BrainlyPopularman
12

GIVEN :

   \\  \:  \: { \huge{.}} \:  \:  \: { \bold{2x +  \dfrac{4}{x} = 9 }} \\

TO FIND :

Value of 'x' = ?

SOLUTION :

   \\  \:  \:  \implies  \:  \: { \bold{2x +  \dfrac{4}{x} = 9 }} \\

   \\  \:  \:  \implies  \:  \: { \bold{2x {}^{2}  +  4 = 9x }} \\

   \\  \:  \:  \implies  \:  \: { \bold{2x {}^{2}   -  9x + 4 = 0 }} \\

• Let's use formula –

   \\  \:  \:  \longrightarrow  \:  \large { \boxed{ \bold{x  =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }}} \\

• Here –

   \\  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \: { \bold{ \: a = 2 }} \\

   \\  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \: { \bold{ \: b = -9 }} \\

   \\  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \: { \bold{ \: c = 4 }} \\

• Now put the values –

   \\  \:  \:  \implies \:   { \bold{x  =  \dfrac{ - ( - 9) \pm \sqrt{ {( - 9)}^{2}  - 4(2)(4)} }{2 \times 2} }} \\

   \\  \:  \:  \implies \:   { \bold{x  =  \dfrac{  9 \pm \sqrt{ 81  - 32} }{4} }} \\

   \\  \:  \:  \implies \:   { \bold{x  =  \dfrac{  9 \pm \sqrt{ 49} }{4} }} \\

   \\  \:  \:  \implies \:   { \bold{x  =  \dfrac{  9 \pm 7 }{4} }} \\

▪︎ Take positive(+) sign :

   \\  \:  \:  \implies \:   { \bold{x  =  \dfrac{  9  +  7 }{4} }} \\

   \\  \:  \:  \implies \:   { \bold{x  =   \cancel\dfrac{  16 }{4} }} \\

   \\  \:  \:  \implies  \: \large { \boxed{ \bold{x  =   4 }}} \\

▪︎ Take negative(-) sign :–

   \\  \:  \:  \implies \:   { \bold{x  =  \dfrac{  9  -  7 }{4} }} \\

   \\  \:  \:  \implies \:   { \bold{x  =   \cancel \dfrac{2}{4} }} \\

   \\  \:  \:  \implies  \: \large { \boxed{ \bold{x  =    \dfrac{1}{2} }}} \\

Hence , The value of 'x' = 4 , ½

Answered by Anonymous
11

 \large\bf\underline{Given:-}

  • 2x + 4 /x = 9

 \large\bf\underline {To \: find:-}

  • Value of x.

 \huge\bf\underline{Solution:-}

  • p(x) = 2x + 4/x = 8

 \rm \mapsto \: 2x +  \frac{4}{x}  = 9 \\  \\  \rm \mapsto \:  \frac{2 {x}^{2}  + 4}{x}  = 9 \\  \\  \rm \mapsto \: 2 {x}^{2}  + 4 = 9x \\  \\  \rm \mapsto \: 2 {x}^{2}  + 4 - 9x = 0  \\  \\  \rm \mapsto \: 2 {x}^{2}  - 9x + 4 = 0  \\ \\   \rm \mapsto \: 2 {x}^{2}  - 8x - x  + 4 \\  \\  \rm \mapsto \: 2x(x - 4) - 1(x - 4) \\  \\  \rm \mapsto \: (2x - 1)(x - 4) \\  \\  \bf\mapsto \: x =  \frac{1}{2}  \: or \: x = 4

Hence value of x = 1/2 or x = 4

\bf\underline {Verification:-}

 \rm \mapsto \: 2x +  \frac{4}{x}  = 9 \\  \\  \rm \mapsto \:  \frac{2 {x}^{2}  + 4}{x}  = 9 \\  \\  \rm \mapsto \: 2 {x}^{2}  + 4 = 9x \\  \\  \rm \mapsto \: 2 {x}^{2}  + 4 - 9x = 0  \\  \\  \rm \mapsto \: 2 {x}^{2}  - 9x + 4 = 0......(i)

from equation (i) we can say that this is a quadratic equation.

p(x) = 2x² - 9x + 4 = 0

a = 2

b = -9

c = 4

Let α and β are the zeroes of the given polynomial.

α = 1/2

β = 4

sum of zeroes = -b/a

➝ 1/2 + 4 = -(-9)/2

➝ 1+8/2 = 9/2

➝ 9/2 = 9/2

Product of zeroes = c/a

➝ 1/2 × 4 = 4/2

➝ 4 /2 = 4/2

➝ 2 = 2

LHS = RHS

hence Verified.

Similar questions