Math, asked by Cuteboyanku, 3 months ago

solve for
x:
(2x/x-5)^2+5(2x/x-5)-24=0

where x is not equal to 5

it's urgent please send as fast as possible.​

Answers

Answered by Arceus02
5

Given:-

  •  \sf  \bigg({ \dfrac{2x}{x - 5} } \bigg)^{2}  + 5 \bigg( \dfrac{2x}{x - 5} \bigg)  - 24 = 0

\\

To find:-

  • The value of x

\\

Answer:-

Given that,

 \sf  \bigg({ \dfrac{2x}{x - 5} } \bigg)^{2}  + 5 \bigg( \dfrac{2x}{x - 5} \bigg)  - 24 = 0

Let \sf \dfrac{2x}{x - 5} be \sf a.

  \longrightarrow \sf  {a}^{2}  + 5a - 24 = 0

On splitting the middle term,

  \longrightarrow \sf  {a}^{2}  + 8a - 3a - 24 = 0

  \longrightarrow \sf a(a + 8) - 3(a  + 8) = 0

  \longrightarrow \sf (a + 8)(a - 3) = 0

So,

If (a + 8) = 0,

 \sf \: a =  - 8

Substituting the value of \sf a which we assumed earlier,

 \sf \longrightarrow  \dfrac{2x}{x - 5}  =  - 8

 \sf \longrightarrow 2x =  - 8(x - 5)

 \sf \longrightarrow 2x =   - 8x + 40

 \sf \longrightarrow 10x =    40

 \longrightarrow \underline{ \underline{ \sf{ \green{ x_{1} = 4}}}}

Or if (a - 3) = 0,

 \sf \: a =  3

Substituting the value of \sf a which we assumed earlier,

 \sf \longrightarrow  \dfrac{2x}{x - 5}  =  3

 \sf \longrightarrow 2x =  3(x - 5)

 \sf \longrightarrow 2x =  3x - 15

 \longrightarrow \underline{ \underline{ \sf{ \green{ x_{2} = 15}}}}

Answered by sharmajipawan11
3

let 2x÷x-5 be y. =y square+5y-24=0

(y+8) (y-3) =0

y=3 , -8

putting. y=3

2x÷x-5 =3

2x=3x-15

x=15

or. 2x÷x-5=-8

2x=-8x+40

10x=40

x=4

Hence , x=15 , 4

Similar questions