Math, asked by sanjayv0521, 10 months ago

Solve for x

36x^2 - 12ax + (a^2
– b^2
) = 0​

Answers

Answered by patelprince63
1

Answer:

36x² -12ax +( a²-b²) = 0

(6x)² - 2.(6x).a + a² -b² = 0

{6x - a}² - b² = 0

use formula ,

a² -b² = (a - b)(a + b)

{6x -a -b}{6x -a + b} =0

x = (a + b)/6 , (a - b)/6

Answered by sonalgavit4
0

Answer:

Step-by-step explanation:

First factorize => (a^2-b^2)= (a+b)(a-b) Now,

36x^2+12ax+(a+b)(a-b)=0 36x^2+6(a+b)x+6(a-b)x+(a+b)(a-b)=0 6x(6x+a+b)+(a-b)(6x+a+b)=0 (6x+a+b)(6x+a-b)=0 Therefore, 6x+a+b=0 and 6x+a-b=0 Hence, x=-(a+b)/6 and x=(b-a)/6

Similar questions