Math, asked by abhinavdixit978, 1 year ago

solve for x: 4/x-3/(2x+3) = 3​

Answers

Answered by BrainlyConqueror0901
89

Answer:

\huge{\boxed{\boxed{\sf{x =  \frac{ - 2  + 2 \sqrt{17} }{6} \:and\:x =  \frac{ - 2  -   2\sqrt{17}  }{6} }}}}

Step-by-step explanation:

\huge{\boxed{\boxed{\underline{\sf{SOLUTION- }}}}}

>>We have to find the value of x

 = ) \frac{4}{x }  -  \frac{3}{2x + 3}  = 3 \\  = )  \frac{4(2x + 3) - 3x}{(2x + 3)x}  = 3 \\  = ) \frac{8x + 12 - 3x}{2 {x}^{2}  + 3x }  = 3 \\  = )5x  + 12 = 6 {x}^{2}  + 9x \\   = )6 {x}^{2}  + 9x - 5x + 12 = 0 \\  = )6 {x}^{2}  + 4x + 12 = 0 \\  = )2(3 {x}^{2}  + 2x + 6) = 0 \\  = )3 {x}^{2}  + 2x + 6 = 0

>>Soving this eqn gives a quadratic eqn

>>From this quadratic we find two values of x.

\huge{\boxed{\boxed{\underline{\sf{quadratic\:formula }}}}}

3 {x}^{2}  + 2x + 6 = 0 \\ d =  {b}^{2}  - 4ac \\ d =  {2}^{2}  - 4(3 \times 6) \\ d = 4 - 4 \times 18 \\ d = 4 - 72 \\ d =  - 68 \\ x =  \frac{ - b +  \sqrt{d} }{2a}  \\ x =  \frac{ - 2 +  \sqrt{ - 68} }{6}  \\ x =  \frac{ - 2  -   2\sqrt{17}  }{6}  -  -  -  -  - 1st \: zeroes \\ x =  \frac{ - 2 -  \sqrt{ - 68} }{6}  \\ x =  \frac{ - 2  + 2 \sqrt{17} }{6}  -  -  -  -  - 2nd \: zeroes

\huge{\boxed{\boxed{\sf{x =  \frac{ - 2  + 2 \sqrt{17} }{6} \:and\:x =  \frac{ - 2  -   2\sqrt{17}  }{6} }}}}

_________________________________________

Similar questions