Math, asked by projjalsanyal, 1 year ago

Solve for x, 4underroot6x^2-13x-2underroot6=0, by completing the Square method

Answers

Answered by Mathexpert
2
given equation is 
4 \sqrt{6} x^2 - 13x - 2 \sqrt{6} = 0

4 \sqrt{6} x^2 - 16x + 3x- 2 \sqrt{6} = 0

( \frac{4 \sqrt{6} x}{3}+1) (3x - 2 \sqrt{6} )

x =  \frac{2 \sqrt{6} }{3} and x =\frac{-3}{4 \sqrt{6} } =  \frac{ -\sqrt{6} }{8}

Answered by Anonymous
3

2 {x}^{2}  - 13x + 9 = 0

move \: consonant \: to \: right - hand \: side \: and \: change \: its \: sign

2 {x}^{2}  - 13x =  \red{ - 9}

divide \: both \: side \: eq. \: by2

 \red{  {x}^{2}  -  \frac{13}{2} x =  \frac{ - 9}{2} }

add \: ( \frac{13}{4}  {)}^{2} to \: both \: side \: eq.

 {x}^{2}  -  \frac{13x}{2}   \red{+  (\frac{13}{4})^{2} } =  -  \frac{9}{2}  \red { + (  \frac{13}{4}  {)}^{2} }

using \:  {a}^{2}  - 2ab +  {b}^{2}  = (a -  {b)}^{2} factor \: the \: eq.

 \red{(x -  \frac{13}{4}  {)}^{2} } =  - 9 + ( \frac{13}{4}  {)}^{2}

{(x -  \frac{13}{4}  {)}^{2} } =  \red{ \frac{97}{16} }

solve \: eq. \: for \: x

 \red{x =    \frac{ -  \sqrt{97}  + 13}{4} }

 \red{x =    \frac{ \sqrt{97}  + 13}{4} }

the \: eq. \: has \: 2 \: sol.

 \boxed{ \pink{x =    \frac{ -  \sqrt{97}  + 13}{4} }}

  {\boxed {\orange{{{x =    \frac{ \sqrt{97}  + 13}{4} }}}}}

Similar questions